
CS 419: Computer Security

Paul Krzyzanowski

Week 13: Part 3
 Mobile Device Security

© 2024 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Threat Landscape

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 2

Mobile Devices: Users
• Lots of users!
– 3.6B Android users, ~1.46B iOS users
– Much of the world is mobile-first

• Users don't think of phones as computers
– Social engineering may work more easily on phones

• Small form factor
– Users may miss security indicators (e.g., certificates on web sites)
– Easy to lose/steal a device

• Users tend to pick bad PINs

• Users may grant app permission requests without thinking
May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 3

https://9to5mac.com/2020/01/28/apple-hits-1-5-billion-active-devices-with-80-of-recent-iphones-and-ipads-running-ios-13/

U.S.: Android: 48.5%, iOS: 51.2%
Worldwide: Android: 70.7%, iOS: 28.6%

https://gs.statcounter.com/os-market-share/mobile/worldwide

Mobile Devices: Interfaces
• Phones have lots of sensors
– GSM/3G/4G LTE/5G – Wi-Fi – Bluetooth – GPS – NFC – Microphone
– Cameras – 6-axis Gyroscope and Accelerometer – Barometer
– Magnetometer (compass) – Proximity – Ambient light – LiDAR
– Fingerprint – Face

• Sensors enable attackers to monitor the world around you
– Where you are & whether you are moving
– Conversations
– Video
– Sensing vibrations due to neighboring keyboard activity led to a word recovery

rate of 80%

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 4

Mobile Devices: Apps
• Lots of apps
– 2.43 million Android apps on Google Play
– 2.29 million iOS apps on the Apple App Store

• Most written by untrusted parties
– We'd be wary of downloading these on our PCs
– With mobile apps we rely on
• Testing & approval by Google (automated) and Apple (automated + manual)
• App sandboxing
• Explicit granting of permissions for resource access

• Apps often ask for more permissions than they use
– Most users ignore permission screens

• Most apps do not get security updates

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 5

2022 data: https://buildfire.com/app-statistics/

Mobile platforms aren't impervious

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 6

Mobile Devices: Platform
• Mobile phones are comparable to desktop systems in complexity
– The OS & libraries will have bugs

• Single user environment

• Limited screen space
– No hovering, no multiple browser windows (usually)

• Malicious apps may be able to get root privileges
– Attackers may install rootkits, enabling long-term control while concealing their

presence

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 7

Some apps are preinstalled (Android)

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 8

Malware Found Pre-Installed on Low-
Cost Android Smartphones
Phones Sold Through U.S. Government-Subsidized Program
Prajeet Nair – July 10, 2020

For the second time this year, security researchers have found malware
embedded in low-cost Android smartphones distributed through a U.S.
government program, security firm Malwarebytes reports.

In this latest case, Malwarebytes analysts found the malware embedded
in the "settings" feature of the Android smartphone making it nearly
impossible to detect or remove from the devices, according to a new
research report.

Malwarebytes obtained an infected ANS UL40 smartphone and studied
the malware embedded in the device, according to the report.

https://www.databreachtoday.com/malware-found-pre-installed-on-low-cost-android-smartphones-a-14594

9

Behind the Scenes: How Criminal Enterprises
Pre-infect Millions of Mobile Devices
Fyodor Yarochkin, Zhengyu Dong, Vladimir Kropotov, Paul Pajares • May 11, 2023

Mobile phones may come pre-infected with malicious firmware before they are even delivered to the
customers. This is a growing problem for regular users and enterprises. Many businesses produce mobile
devices by outsourcing the manufacturing process. The process comes with risks. The supply chain of
the outsourced manufacturing can be easily infiltrated by third-party threat actors.

In this presentation, we will dive into the criminal operations of a criminal enterprise that targets mobile
phones. The criminal group has infected millions of android devices, mainly mobile phones, but also smart
watches, smart TVs and more. The infection turns these devices into mobile proxies, tools for stealing and
selling SMS messages, social media and online messaging accounts and monetization via advertisements
and click fraud.

Our data shows that this is a continuously growing problem. We manually analyzed dozens of the stock-
firmware images to confirm the presence of malicious software in these models. Further, through our
telemetry data, we confirmed that there are millions of infected devices operated globally. The main cluster
of these devices is in South-East Asia and Eastern Europe, however, this is a truly global problem. URL

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski

Example: fake Facebook authentication
• July 2020
– 25 apps discovered in the Google Play Store that

trick Facebook users to give authentication
credentials

• Apps infect target phones with malware
– Detects opening of the Facebook app
– Launches a browser and navigates to

Facebook’s login window
– Malware uses JavaScript to copy login

credentials and send them to a server

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 10

https://www.evina.com/they-steal-your-facebook/

11

Thousands of Android users downloaded
this password-stealing malware disguised
as anti-virus from Google Play
Users looking to protect their smartphone from hackers found their devices infected with
Sharkbot malware.
Danny Palmer • April 7, 2022

Six phony anti-virus apps have been removed from the Google Play app store because instead of protecting users from
cyber criminals, they were actually being used to deliver malware to steal passwords, bank details and other personal
information from Android users.

The malware apps have been detailed by cybersecurity researchers at Check Point, who say they were downloaded from
Google's official app marketplace by over 15,000 users who were looking to protect their devices, which instead became
infected with Sharkbot Android malware.

Sharkbot is designed to steal usernames and passwords, which is does by luring victims into entering their credentials in
overlayed windows which sends the information back to the attackers, who can use it to gain access to emails, social
media, online banking accounts and more.

https://www.zdnet.com/article/these-android-users-wanted-to-protect-their-phones-from-hackers-instead-they-downloaded-malware/

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski

May 1, 2024 12

ht
tp

s:
//w

w
w

.th
er

eg
is

te
r.c

o.
uk

/2
01

7/
07

/2
0/

io
s_

se
cu

rit
y_

sk
yc

ur
e/

Ways to Infiltrate an iOS Device
Here are a few ways to get malware onto an iOS device,
along with examples of real exploits that used that
method.

Threats
• Privacy
– Data leakage
– Identifier leakage
– Location privacy
– Microphone/camera access

• Security vulnerabilities
– Bugs
– Phishing
– Malware
– Malicious Android intents (inter-app communication)
– Broad access to resources (more than the app needs)

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 13

iOS input validation vulnerabilities in Messages
Bugs can surface in unexpected places … over & over

• May 2015: "Unicode of Death"
– Single string in a text message could crash an iPhone

• Again in Jan 2018: "ChaiOS"
– Receiving a link causes the messages app to go blank & crash instantly after opening
– Malformatted characters in the message causes the Webkit HTML engine to crash
– The target file contains multiple such characters, so CoreText spends a lot of CPU time trying to match fonts for them

• Again in Feb 2018
– A character in an Indian language (Telugu) causes Apple's iOS Springboard to crash when the message is received
– Messages will no longer open as it fails to load the character
– Affects third-party messaging apps too

• Again in May 2018: Black dot of death
– Thousands-character-long string of invisible Unicode text causes iMessages to crash when the user launches the app

• Again in April 2020: Sindhi characters
– Several characters from the Sindhi language that cause iOS to lock up and an iPhone to crash

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 14

Another data validation problem…

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 15

Wallpaper crash explained: Here’s how a
simple image can soft-brick phones
Bogdan Petrovan • June 1, 2020

How can a simple image crash an Android phone to the point that it becomes
unusable?
…

Here’s a recap: Setting a particular image as wallpaper can send some phones into
a loop of crashes that makes them unusable.

There are a few solutions, depending on how hard the phone is hit. Some users
were able to change the wallpaper in the short interval between crashes. Others
had success deleting the wallpaper using the recovery tool TWRP. But in most
cases, the only solution was to reset the phone to factory settings, losing any data
that’s not backed up.

https://www.androidauthority.com/android-wallpaper-crash-1124577/

4-year campaign backdoored iPhones using
possibly the most advanced exploit ever
"Triangulation" infected dozens of iPhones belonging to employees of Moscow-based Kaspersky.

Dan Goodin • December 27, 2023

Researchers on Wednesday presented intriguing new findings surrounding an attack that over four years backdoored dozens if not
thousands of iPhones, many of which belonged to employees of Moscow-based security firm Kaspersky. Chief among the discoveries:
the unknown attackers were able to achieve an unprecedented level of access by exploiting a vulnerability in an undocumented
hardware feature that few if anyone outside of Apple and chip suppliers such as ARM Holdings knew of.

“The exploit's sophistication and the feature's obscurity suggest the attackers had advanced technical capabilities,” Kaspersky
researcher Boris Larin wrote in an email. “Our analysis hasn't revealed how they became aware of this feature, but we're exploring all
possibilities, including accidental disclosure in past firmware or source code releases. They may also have stumbled upon it through
hardware reverse engineering.”
…
Over a span of at least four years, Kaspersky said, the infections were delivered in iMessage texts that installed malware through a
complex exploit chain without requiring the receiver to take any action. With that, the devices were infected with full-featured spyware
that, among other things, transmitted microphone recordings, photos, geolocation, and other sensitive data to attacker-controlled
servers. Although infections didn’t survive a reboot, the unknown attackers kept their campaign alive simply by sending devices a new
malicious iMessage text shortly after devices were restarted.

https://arstechnica.com/security/2023/12/exploit-used-in-mass-iphone-infection-campaign-targeted-secret-hardware-feature/

24

Critical bug could have let hackers
commandeer millions of Android devices
Flaw could be exploited with malicious audio file.
Dan Goodin • April 21, 2022

TextSecurity researchers said they uncovered a vulnerability that could have allowed hackers to commandeer millions of
Android devices equipped with mobile chipsets made by Qualcomm and MediaTek.

The vulnerability resided in ALAC—short for Apple Lossless Audio Codec and also known as Apple Lossless—which is an
audio format introduced by Apple in 2004 to deliver lossless audio over the Internet. While Apple has updated its
proprietary version of the decoder to fix security vulnerabilities over the years, an open-source version used by Qualcomm
and MediaTek had not been updated since 2011.

Together, Qualcomm and MediaTek supply mobile chipsets for an estimated 95 percent of US Android devices.

The buggy ALAC code contained an out-of-bounds vulnerability, meaning it retrieved data from outside the limits of
allocated memory. Hackers could exploit this mistake to force the decoder to execute malicious code that otherwise would
be off-limits.

https://arstechnica.com/information-technology/2022/04/critical-bug-could-have-let-hackers-commandeer-millions-of-android-devices/

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 25

This Critical Android Security Threat
Could Affect More Than 1 Billion
Devices: What You Need To Know
Davey Winder • May 26, 2020

Another week, another critical security warning. Here’s what most Android users need to know about
StrandHogg 2.0
…
The risk being that, if exploited by an attacker, this vulnerability could lead to an elevation of privilege and
give that hacker access to bank accounts, cameras, photos, messages and login credentials, according to
the researchers who uncovered it. What's more, it could do this by assuming "the identity of legitimate apps
while also remaining completely hidden."
…
Rather than exploit the same TaskAffinity control setting as the original StrandHogg vulnerability, StrandHogg
2.0 doesn't leave behind any markers that can be traced. Instead, it uses a process of "reflection," which
allows it to impersonate a legitimate app by using an overlay into which the user actually enters credentials.
But that's not all; it also remains entirely hidden in the background while hijacking legitimate app permissions
to gain access to SMS messages, photos, phone conversations, and even track GPS location details.

https://www.forbes.com/sites/daveywinder/2020/05/26/critical-android-data-stealing-security-threat-confirmed-for-almost-all-android-versions-strandhogg-google-update-warning/?sh=175793d82c82

Android Security

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 27

Application Needs

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 28

Integrity
App shouldn’t be modified
between creation &
installation

Isolation
Each app needs private
data and be protected
from other apps

Sharing
Access to shared storage
and devices, including the
network

Inter-app services
Send messages to other
apps to invoke services –
when allowed

Portability
Apps should run on
different hardware
architectures

App Sandboxing
• Android is built on SELinux

• Apps are isolated and can only access their resources

• Sandboxing enforced by Linux
– Android is a single-user system
– Each app
• is assigned a unique user ID on installation
• runs as a separate process
• has a private data folder

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 29

Core Android services also
have their own user IDs

1001 Telephony
1002 Bluetooth
1003 Graphics
1004 Input devices
1005 Audio
 etc.

App Sandboxing: file permissions
Two mechanisms are used
1. Linux file permissions (discretionary access control)

– Owner & root can change permissions
– Allows an app to share a data file

2. SELinux mandatory access control
– Various data & cache directories
– Owner cannot change access permissions

Storage
• External storage: Shared among all apps

• Internal storage: Per-app private directory

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 30

App = set of components
• PC apps have a single launching point & run as a monolithic process

• Android apps contain multiple components
– Activities
– Services
– Broadcast receivers
– Content providers

• Example: take and share a photo in Instagram
– Instagram requests the camera app
– Android OS launches the camera app to handle the request
• User now sees the camera app and no longer interacts with the Instagram app

– Camera app may access other services, such as a file chooser, that will launch another app
– User exits the launched app(s), returns to Instagram, and shares the photo

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 31

Permissions
Apps need permissions to access services
– System resources: logs, battery levels, …
– System interfaces: Internet, Bluetooth, send SMS, send email, …
– Sensitive data: SMS messages, contacts, email, …
– App-defined services

Services are assigned protection levels:

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 32

Normal Default - no danger to users or system

Dangerous Access that can compromise the system or privacy – user has
to approve during installation or runtime

Signature Access granted if the app signed by the same developer &
contains the same certificate

SignatureOrSystem Like signature but access granted if a system application is
requesting it

Intents
Android apps communicate with system services, between app components, and with
other apps via intents

• Intent = messaging objects
{action, data to act on, component to handle the intent} used to
– Start a service (background) • Start an activity (user-facing & foreground) • Deliver notifications

(broadcasts)

• Explicit intents
– App identifies the target component in the intent

• Implicit intents
– App asks Android to find a component based on its data

 E.g., view a web page

App registers its available intents when it is installed
– If several apps register the same intent, the user selects which should be used (e.g., multiple browsers)

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 33

Intents vs. Permissions
• Intents declare app capabilities
– Associate actions with components & how they are started

• Permissions
– Identify whether one app is allowed to access another app’s component

• Access to components passes through the gatekeeper, which validates
requests

Intents = mechanism

Permissions = policy

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 34

M
an

ife
st

(la
be

ls
)

Activity
Represents a single

screen in an app

Service
Component that

works in the
background

gatekeeper

Another app

Intent Intent

Platform Security
• Android creates a read-only partition for the kernel, system libraries, and the

app framework
– Even malicious apps with elevated privileges cannot modify.

• Root privileges
– Powerful – but not granted to apps

• Verified boot
– Each stage is signed and verified

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 35

File Encryption
• File-based encryption
– Device Encrypted (DE) storage: available during boot and after a user unlocked

the device
– Credential Encrypted (CE) storage: available only after the user unlocked the

device

• Uses Linux ext4 file system or F2FS
– 512-bit AES file encryption keys
– Stored in the Trusted Execution Environment (TEE)
• A separate part of the processor with protected memory running its own OS (Trusty) and

communicates with the Linux kernel only via a well-defined messaging API

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 36

App Integrity
• Signed applications
– Apps must be signed. Signature validated by Google Play & package manager

on the device

• App verification
– Users can enable "verify apps" to have apps evaluated by an app verifier prior to

installation
– Will scan app against Google's database of apps

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 37

Exploit Prevention
Android code & Linux execution environment uses

• Stack canaries

• Some heap overflow protections – check backward & forward pointers

• ASLR (Address Space Layout Randomization)

• No-execute (NX) hardware protection to prevent code execution
on the heap or stack

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 38

iOS Security

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 39

Boot process
• Boot ROM – trusted read-only component
– Contains boot code & Apple root certificate

• Boot ROM
 ⇒ Loads Low-Level Boot Loader (LLB)
 ⇒ loads iBoot
 ⇒ loads iOS kernel

• Each step verifies the signature of the next package

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 40

Data security: encrypted file system & encrypted files
• Each file gets a random 256-bit AES file key when it is created

• File key is encrypted with a class key
– Class = user or group; depends on who should access the file

• Metadata contains file key and info on the class that protects it
– Can also specify per-extent keys: portions of a file can be given different keys

• File metadata is decrypted with the file system key
– File system key = random key created when iOS is installed

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 41

File contents
File metadata

File keyClass key
Passcode

key

Hardware
key

File system key

App Sandbox
All third-party apps are sandboxed

• Apple kernel-level sandbox
– Per-app policy definition file
– Enforcement of system calls and parameters
– Controls access to files, system hardware, network

• Each app has a unique home directory for its files
– Restricted from accessing files stored by other apps or making changes to the device

• System files and resources are shielded from the user’s apps

• Apps run as a non-privileged user “mobile”

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 42

iOS App Security
• Runtime protection
– System resources & most syscalls not directly accessible by user apps – must use iOS APIs
– App sandbox restricts access to other app's data & resources
– Inter-app communication through iOS APIs
– Entire OS partition is read-only
– Code generation prevented – memory pages cannot be made executable

• Mandatory code signing
– Must be signed using an Apple Developer certificate
– Root certificate is stored in the hardware – used to validate OS updates
– iOS performs runtime code signature checks of all executable memory pages

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 43

Apps: Entitlements & Extensions
• Entitlements
– Signed key-value pairs that are granted to an app to allow access to services

• Extensions
– Executable binaries packaged within an app that provide functions to other apps
– Sandboxed and run in their own address space
– Entitlements restrict extension availability to specific apps

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 44

Runtime environment
• Signature checking of each page loaded from an app while executing

• Address space layout randomization (ASLR)

• Memory execute protection – ARM’s Execute Never (XN) feature

• Stack canaries

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 45

Trusted Execution Environment (TEE)

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 46

Keeping keys secret
• For security, we rely on
– Keys
– Encryption, decryption services
– Signing services
– Biometric data

• This data needs to be kept secure
– Along with other data, like payment credentials

• Trusted Execution Environment
– Isolated environment for data storage & trusted services

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 47

Hardware aids to security: ARM TrustZone
• Hardware-isolated secure & non-secure worlds
– Each CPU core has two virtual cores: secure & non-secure

• Processor executes in one world at any
given time

• Each world has its own OS & applications

• Software resides in the secure or non-secure world
– Non-secure (non-trusted) applications cannot

access secure resources directly

• Proof of device: private key stored in trusted area

• Applications
– Secure key management & key generation
– Secure boot, digital rights management, secure payment

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 48
http://www.arm.com/products/security-on-arm/trustzone

Non-
secure Secure

Android Trusty Trusted Execution Environment
• Trusty TEE
– Isolated from the rest of Android via hardware & software
– Trusty runs on the same processor as the Android Linux kernel
– Intel hardware: uses Intel’s Virtualization Technology
– Hardware support
• ARM: Trustzone™
• Intel Virtualization Technology

• Trusty contains
– OS kernel derived from Little Kernel (https://github.com/littlekernel/lk)
– Linux driver to transfer data between the secure Trusty environment & Android
– Android userspace library to communicate with trusted applications

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 49

Android Trusty Trusted Execution Environment
• Processes in Trusty
– Each process runs in unprivileged mode and is isolated from others via memory

management
– All applications are developed by a single party and packaged with the Trusty kernel

image, which is signed
– Verified by the bootloader during boot

• Uses for Trusty
– Gatekeeper subsystem
• Enrolls and verifies passwords via an HMAC

– DRM framework for protected content
• TEE stores device-specific keys needed to decrypt content
• Main processor sees only the encrypted content and not the keys

– Mobile payments

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 50

iOS: Apple Secure Enclave
Similar to TrustZone but a separate processor
– Coprocessor in Apple A7 and later processors: iPhones, TV, Watch, HomePods, Macs
– Runs its own OS (modified L4 microkernel)
– Has its own secure boot & custom software update
– Provides

– Maintains integrity of data protection even if kernel has been compromised
– Uses encrypted memory
– Communicates with the main processor by an interrupt-driven mailbox and shared

memory buffers

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 51

• All cryptographic operations for data protection & key management
• Random number & key generation
• Secure key store (including UID & GID keys)
• Biometric auth, including Touch ID (fingerprint) and the neural network for Face ID
• Authentication for secure payments

Summary
• Mobile devices are attractive targets
– Huge adoption, simple app installation by users, always with the user

• Android security model
– Isolated processes with separate UID and separate VM
– Java/Kotlin code (mostly, but also native): managed, no buffer overflows
– Permission model & communication via intents

• iOS security model
– App sandbox based on file isolation
– File encryption
– Apps written in Swift (older ones in Objective C)
– Vendor-signed code, closed marketplace (App Store only)

• Protection efforts have generally been good
– Usually far better than on normal computers … but often not good enough!

May 1, 2024 CS 419 © 2024 Paul Krzyzanowski 52

The End

May 1, 2024 53CS 419 © 2024 Paul Krzyzanowski

