
CS 417 10/1/2016

Paul Krzyzanowski 1

Distributed Systems
01. Introduction

Paul Krzyzanowski

Rutgers University

Fall 2016

1 October 1, 2016 © 2014-2016 Paul Krzyzanowski

What can we do now

that we could not do

before?

~30 years ago

 1986: The Internet is 17 years old

2 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Technology advances

Processors
Memory

Networking

Storage

Protocols

3 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Networking: Ethernet – 1973, 1976

June 1976: Robert Metcalfe presents the concept of Ethernet at the National

Computer Conference

1980: Ethernet introduced as de facto standard (DEC, Intel, Xerox)

4 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Network architecture

LAN speeds

– Original Ethernet: 2.94 Mbps

– 1985: thick Ethernet: 10 Mbps – 1 Mbps with twisted pair networking

– 1991: 10BaseT - twisted pair: 10 Mbps – Switched networking: scalable bandwidth

– 1995: 100 Mbps Ethernet

– 1998: 1 Gbps (Gigabit) Ethernet

– 2001: 10 Gbps introduced

– 2005-now: 40/100 Gbps

+ Wireless LAN

 1999: 802.11b (wireless Ethernet) standardized

 2014: 802.11ac = 8×866.7 Mbps = 7 Gbps

+ Personal Area Networks: Bluetooth, ZigBee, Z-Wave

100 – >10,000x

faster

5 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Network Connectivity

Then:
– Large companies and

universities on Internet

– Gateways between other networks

– Consumers used dial-up
bulletin boards

– 1985: 1,961 hosts on the Internet

Now:
– One Internet (mostly)

– Over a billion hosts

– Widespread connectivity

– High-speed WAN connectivity: >50 Mbps … 1 Gbps

– Switched LANs

– Wireless networking

6

https://www.isc.org/network/survey/

October 1, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 10/1/2016

Paul Krzyzanowski 2

Metcalfe’s Law

The value of a telecommunications network is proportional to

the square of the number of connected users of the system.

This makes networking interesting to us!

7 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Computing Power

Computers got…

–Smaller

–Cheaper

–Power efficient

–Faster

Microprocessors became technology leaders

8 October 1, 2016 © 2014-2016 Paul Krzyzanowski

1985-now:

– 714x smaller transistors

– >7000x more transistors

– >120x faster clock

Computing Power (Intel Processors)

9

8080
2 MHz

6K transistors @ 10µm

386DX
33 MHz

275K transistors @ 1.5µm

1977 1985 2005

Pentium D
2.6 – 3.7 GHz

2 cores

169M transistors @ 90nm

Pentium Pro
200 MHz

5.5M transistors @ 500nm

1995 2015

I7-6700K Skylake
4.0 GHz

4 cores, 8 MB shared cache

~1.3M transistors @ 14nm

Xeon Haswell-E5
2.3 GHz

18 cores, 2.5 MB cache/core

5.6M transistors @ 22nm

We can no longer make

CPUs much faster.

How do we get increased

performance? More cores.

→Parallel system on a chip

GPUs scaled too: 2016 – Quadro P6000: 12 billion transistors, 3,840 CUDA cores

October 1, 2016 © 2014-2016 Paul Krzyzanowski

Network Content: Music

Example: 9,839 songs
– 49 GB

– Average song size: 5.2 MB

Today
– Streaming (Pandora/Spotify): 96-320 kbps

– Download time per song @100 Mbps: ~ 0.4 seconds

– Storage cost for the collection: ~ $1.60 ($120 for a 4 TB drive)

~30 years ago (1985)
– Streaming not practical

– Download time per song, V90 modem @44 Kbps: 15 minutes

– Storage cost: $511,640 (40 MB at $400 – over 1,279 drives!)

10 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Network Content: Video

Today

– Netflix streaming 4K video @ 15.6 Mbps (HEVC/h.265 codec)

– YouTube: stores ~76 PB (76×1015) per year

~30 years ago (1985)

– Video streaming not feasible

11 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Protocols

Many have been devloped 

 These are the APIs for network interaction

Faster CPU 

 more time for protocol processing
– ECC, TCP checksums, parsing

– Image, audio compression feasible

Faster network 

  support bigger (and bloated) protocols
– e.g., SOAP/XML, JSON – human-readable, explicit typing

12 October 1, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 10/1/2016

Paul Krzyzanowski 3

Building and classifying

parallel and distributed systems

13 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Flynn’s Taxonomy (1966)

SISD

– traditional uniprocessor system

SIMD

– array (vector) processor

– Examples:

• GPUs – Graphical Processing Units for video

• AVX: Intel’s Advanced Vector Extensions

• GPGPU (General Purpose GPU): AMD/ATI, NVIDIA

MISD

– Generally not used and doesn’t make sense

– Sometimes (rarely!) applied to classifying fault-tolerant redundant systems

MIMD

– multiple computers, each with:

• program counter, program (instructions), data

– parallel and distributed systems

Number of instruction streams and number of data streams

14 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Subclassifying MIMD

memory

– shared memory systems: multiprocessors

– no shared memory: networks of computers, multicomputers

interconnect

– bus

– switch

delay/bandwidth

– tightly coupled systems

– loosely coupled systems

15 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Parallel Systems: Multiprocessors

• Shared memory

• Shared clock

• All-or-nothing failure

16 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Shared Bus

Bus-based multiprocessors

SMP: Symmetric Multi-Processing
All CPUs connected to one bus (backplane)

Memory and peripherals are accessed via shared bus. System looks the

same from any processor.

The bus becomes a point of congestion … limits performance

17

CPU A CPU B

Memory Device I/O

October 1, 2016 © 2014-2016 Paul Krzyzanowski

Shared Bus

Bus-based multiprocessors + cache

• The cache: great idea to deal with bus overload & memory contention

– Cache = low-latency memory that is local to a processor

• CPU reads/writes cache memory

– Access main memory only on cache miss

18

Memory coherence is now a problem

CPU A CPU B

Memory Device I/O
Cache

Memory

Cache

October 1, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 10/1/2016

Paul Krzyzanowski 4

Shared Bus

Write-through cache

• Try to fix coherence problem with a write-through cache

– Updates to cache are propagated to main memory

• But other caches may still have stale data!

19

Memory coherence is now a problem

CPU A CPU B

Memory Device I/O
Cache

Memory

Cache

October 1, 2016 © 2014-2016 Paul Krzyzanowski

Shared Bus

Snoopy cache

• Add snooping logic to each cache controller

• Modified data is written to main memory

• Each cache snoops on bus traffic to see if its cached data is modified

20

Memory coherence is now a problem

CPU A CPU B

Memory Device I/O
Cache

Memory

Cache

October 1, 2016 © 2014-2016 Paul Krzyzanowski

Switched multiprocessors

• Bus-based architecture does not scale linearly to large

number of CPUs (e.g., beyond 8)

21 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Switched multiprocessors

Divide memory into groups and connect chunks of

memory to the processors with a crossbar switch

n2 crosspoint switches – expensive switching fabric

We still want to cache at each CPU – but we cannot snoop!

CPU

CPU

CPU

CPU

mem mem mem mem

22 October 1, 2016 © 2014-2016 Paul Krzyzanowski

NUMA

• Hierarchical Memory System

• All CPUs see the same address space

• Each CPU has local connectivity to a region of memory

– fast access

• Access to other regions of memory – slower

• Placement of code and data becomes challenging

– Operating system has to be aware of memory allocation and CPU

scheduling

23 October 1, 2016 © 2014-2016 Paul Krzyzanowski

NUMA

• SGI Origin’s ccNUMA

• AMD64 Opteron

– Each CPU gets a bank of DDR memory

– Inter-processor communications are sent over a HyperTransport link

• Intel

– Integrated Memory Controller (IMC): fast channel to local memory

– QuickPath Interconnect: point-to-point interconnect among processors

• Linux ≥2.5 kernel, Windows ≥7

– Multiple run queues

– Structures for determining layout of memory and processors

24 October 1, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 10/1/2016

Paul Krzyzanowski 5

Cache Coherence With Switched CPUs

Home Snoop: Home-based consistency protocol

– Each CPU is responsible for a region of memory

– It is the “home agent” for that memory

• Each home agent maintains a directory (table) that keeps track of who has the latest

version

25

CPU

1

CPU

2

CPU

3

CPU

4

Memory

Interface

Memory

Interface

Memory

Interface

Memory

Interface

Intel Example

October 1, 2016 © 2014-2016 Paul Krzyzanowski

Cache Coherence With Switched CPUs

1. CPU sends request to home agent

2. Home agent requests status from

the CPU that may have a cached

copy (caching agent)

26

CPU

1

CPU

2

CPU

3

CPU

4

Home Agent Caching Agent

1

2

October 1, 2016 © 2014-2016 Paul Krzyzanowski

Cache Coherence With Switched CPUs

3. (a) Caching agent sends data update to

 new caching agent

(b) Caching agent sends status update to

 home agent

4. Home agent resolves any conflicts &

completes transaction

27

CPU

1

CPU

2

CPU

3

CPU

4

Home Agent Caching Agent

3a

3b

New Caching Agent

4

October 1, 2016 © 2014-2016 Paul Krzyzanowski

Networks of computers

• Eventually, other bottlenecks occur

– Network, disk

• We want to scale beyond multiprocessors

– Multicomputers

• No shared memory, no shared clock

• Communication mechanism needed

– Traffic much lower than memory access

– Network

28 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Bus-based multicomputers

Collection of workstations on a LAN

29

A shared bus-based interconnect gives us the option of

snooping on network traffic

Interconnect (Local Area Network)

CPU A

Memory

LAN adapter

CPU A

Memory

LAN adapter

CPU A

Memory

LAN adapter

CPU A

Memory

LAN adapter

October 1, 2016 © 2014-2016 Paul Krzyzanowski

Switched multicomputers

Collection of workstations on a LAN

LAN

switch

30

A switched interconnect does not allow snooping

CPU A

Memory

LAN adapter

CPU A

Memory

LAN adapter

CPU A

Memory

LAN adapter

CPU A

Memory

LAN adapter

October 1, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 10/1/2016

Paul Krzyzanowski 6

Wide Area Distribution

LAN

switch

31

LAN

switch

Router

Router

CPU A

Memory

LAN adapter

CPU A

Memory

LAN adapter

CPU A

Memory

LAN adapter

CPU A

Memory

LAN adapter

October 1, 2016 © 2014-2016 Paul Krzyzanowski

What is a Distributed System?

A collection of independent, autonomous hosts connected

through a communication network.

– No shared memory (must use the network)

– No shared clock

32 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Single System Image

Collection of independent computers that appears as a

single system to the user(s)

– Independent = autonomous

– Single system: user not aware of distribution

33 October 1, 2016 © 2014-2016 Paul Krzyzanowski

You know you have a distributed

system when the crash of a computer

you’ve never heard of stops you from

getting any work done.

 – Leslie Lamport

34 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Why build distributed systems?

35 October 1, 2016 © 2014-2016 Paul Krzyzanowski

How can you get massive performance?

• Multiprocessor systems don’t scale

• Example: movie rendering
– Disney’s Cars 2 required 11.5 hours to render each frame

(average) – some took 90 hours to render!

• 12,500 cores on Dell render blades

– Monsters University required an average of 29 hours per frame

• Total time: over 100 million CPU hours

• 3,000 to over 5,000 AMD processors; 10 Gbps and 1 Gbps networks

• Google
– Over 40,000 search queries per second on average

– Index >50 billion web pages

– Uses hundreds of thousands of servers to do this

36 October 1, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 10/1/2016

Paul Krzyzanowski 7

Google

• In 1999, it took Google one month to crawl and build an index of

about 50 million pages

In 2012, the same task was accomplished in less than one minute.

• 16% to 20% of queries that get asked every day have never been

asked before

• Every query has to travel on average 1,500 miles to a data center

and back to return the answer to the user

• A single Google query uses 1,000 computers in 0.2 seconds to

retrieve an answer

37

Source: http://www.internetlivestats.com/google-search-statistics/

October 1, 2016 © 2014-2016 Paul Krzyzanowski

Why build distributed systems?

• Performance ratio

– Scaling multiprocessors may not be possible or cost effective

• Distributing applications may make sense

– ATMs, graphics, remote monitoring

• Interactive communication & entertainment

– Work, play, keep in touch:

messaging, photo/video sharing, gaming, telephony

• Remote content

– Web browsing, music & video downloads, IPTV, file servers

• Mobility

• Increased reliability

• Incremental growth

38 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Design goals: Transparency

High level: hide distribution from users

Low level: hide distribution from software

– Location transparency

Users don’t care where resources are

– Migration transparency

Resources move at will

– Replication transparency

Users cannot tell whether there are copies of resources

– Concurrency transparency

Users share resources transparently

– Parallelism transparency

Operations take place in parallel without user’s knowledge

39 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Design challenges

Reliability
– Availability: fraction of time system

is usable

• Achieve with redundancy

• But consistency is an issue!

– Reliability: data must not get lost

• Includes security

Scalability
– Distributable vs. centralized

algorithms

– Can we take advantage of having

lots of computers?

Performance
– Network latency, replication,

consensus

Programming
– Languages & APIs

Network
– Disconnect, latency, loss of data

Security
– Important but we want convenient

access as well

40 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Main themes in distributed systems

• Scalability
– Things are easy on a small scale

– But on a large scale

• Geographic latency (multiple data centers), administration, dealing with many

thousands of systems

• Latency & asynchronous processes
– Processes run asynchronously: concurrency

– Some messages may take longer to arrive than others

• Availability & fault tolerance
– Fraction of time that the system is functioning

– Dead systems, dead processes, dead communication links, lost messages

• Security
– Authentication, authorization, encryption

41 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Key approaches in distributed systems

• Divide & conquer
– Break up data sets and have each system work on a small part

– Merging results is usually efficient

• Replication
– For high availability, caching, and sharing data

– Challenge: keep replicas consistent even if systems go down and come up

• Quorum/consensus
– Enable a group to reach agreement

42 October 1, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 10/1/2016

Paul Krzyzanowski 8

Service Models (Application Architectures)

43 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Centralized model

• No networking

• Traditional time-sharing system

• Single workstation/PC or direct connection of multiple

terminals to a computer

• One or several CPUs

• Not easily scalable

• Limiting factor: number of CPUs in system

– Contention for same resources (memory, network, devices)

44 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Client-Server model

• Clients send requests to servers

• A server is a system that runs a service

• The server is always on and processes requests from

clients

• Clients do not communicate with other clients

• Examples

– FTP, web, email

45 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Layered architectures

• Break functionality into multiple layers

• Each layer handles a specific abstraction

– Hides implementation details and specifics of hardware, OS,

network abstractions, data encoding, …

46

Hardware

Operating System

Middleware

Applications

Includes layering for

file systems, networking, devices, memory

Includes naming, security, persistence,

notifications, agreement, remote procedures,

data encoding, …

October 1, 2016 © 2014-2016 Paul Krzyzanowski

Tiered architectures

• Tiered (multi-tier) architectures

– distributed systems analogy to a layered architecture

• Each tier (layer)

– Runs as a network service

– Is accessed by surrounding layers

• The “classic” client-server architecture is a two-tier model

– Clients: typically responsible for user interaction

– Servers: responsible for back-end services (data access, printing, …)

47 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Multi-tier example

48

client middle tier

User interface

Data presentation

& validation

• Queuing requests

• Coordinating a

transaction among

multiple servers

• Managing connections

• Formatting/converting

data

back end

• Database system

• Legacy software

October 1, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 10/1/2016

Paul Krzyzanowski 9

Multi-tier example

49

client web server

object

store
application

server

database

October 1, 2016 © 2014-2016 Paul Krzyzanowski

Multi-tier example

50

c
lie

n
t

w
e
b

 s
e
rv

e
r object

store

a
p

p
lic

a
ti
o
n

s
e
rv

e
r

database

Some tiers may be transparent to the application

fi
re

w
a
ll

fi
re

w
a
ll

lo
a
d

b
a
la

n
c
e
r

c
a
c
h
e

October 1, 2016 © 2014-2016 Paul Krzyzanowski

Peer-to-Peer (P2P) Model

• No reliance on servers

• Machines (peers) communicate with

each other

• Goals

– Robustness

• Expect that some systems may be down

– Self-scalability: the system can handle

greater workloads as more peers are

added

• Examples

– BitTorrent, Skype

51

clients servers

peers

October 1, 2016 © 2014-2016 Paul Krzyzanowski

Hybrid model

• Many peer-to-peer architectures still rely on a server

– Look up, track users

– Track content

– Coordinate access

• But traffic-intensive workloads are delegated to peers

52 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Processor pool model

• Collection of CPUs that can be assigned processes on demand

• Render farms

53 October 1, 2016 © 2014-2016 Paul Krzyzanowski

Cloud Computing

Resources are provided as a network (Internet) service

– Software as a Service (SaaS)
Remotely hosted software

• Salesforce.com, Google Apps, Microsoft Office 365

– Infrastructure as a Service (IaaS)
Compute + storage + networking

• Microsoft Azure, Google Compute Engine, Amazon Web Services

– Platform as a Service (PaaS)
Deploy & run web applications without setting up the infrastructure

• Google App Engine, AWS Elastic Beanstalk

– Storage
Remote file storage

• Dropbox, Box, Google Drive, OneDrive, …

54 October 1, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 10/1/2016

Paul Krzyzanowski 10

The end

55 October 1, 2016 © 2014-2016 Paul Krzyzanowski

