
CS 417 9/15/2016

Paul Krzyzanowski 1

Distributed Systems
02. Networking

Paul Krzyzanowski

Rutgers University

Fall 2016

1 September 15, 2016 © 2014-2016 Paul Krzyzanowski

Connecting computers

Point-to-point links

– Connect one sender with one receiver

– No conflict for access to link

– Not practical

2

Direct link

Connecting computers

Communication network

– Share the infrastructure

– Collision: when two nodes transmit at the same time, same channel

• Both signals get damaged

– Multiple access problem

• How do you coordinate multiple senders?

3

Network

Multiple Access Protocols

• Share a communication medium

• Random access

– Statistical multiplexing = packet switching

– No timeslots

– Anyone can transmit when ready

– But be prepared for collisions or dropped packets

4 September 15, 2016 CS 417 - Paul Krzyzanowski

Modes of connection

Circuit-switching (virtual circuit)

– Dedicated path (route) – established at setup

– Guaranteed (fixed) bandwidth – routers commit to resources

– Typically fixed-length packets (cells) – each cell only needs a

virtual circuit ID

– Constant latency

Packet-switching (datagram)

– Shared connection; competition for use with others

– Data is broken into chunks called packets

– Each packet contains a destination address

– available bandwidth channel capacity

– variable latency

5 September 15, 2016 © 2014-2016 Paul Krzyzanowski

This is what IP uses

Ethernet

• Packet-based protocol

• Originally designed for shared (bus-based) links

• Each endpoint has a unique ethernet address

– MAC address: 48-bit value

6 September 15, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/15/2016

Paul Krzyzanowski 2

Ethernet service guarantees

• Each packet (frame) contains a CRC checksum

– Recipient will drop the frame if it is bad

• No acknowledgement of packet delivery

• Unreliable, in-order delivery

7 September 15, 2016 © 2014-2016 Paul Krzyzanowski

Going beyond the LAN

• LAN = Local Area Network

– A set of devices connected to the same ethernet network is a LAN

– Wi-Fi (802.11) is compatible with ethernet and is part of the LAN

• We want to communicate beyond the LAN

– WAN = Wide Area Network

• The Internet

– Evolved from ARPANET (1969)

– Internet = global network of networks based on the Internet

Protocol (IP) family of protocols

8 September 15, 2016 © 2014-2016 Paul Krzyzanowski

The Internet: Key Design Principles

1. Support interconnection of networks

– No changes needed to the underlying physical network

– IP is a logical network

2. Assume unreliable communication; design for best effort

– If a packet does not get to the destination, software on the receiver

will have to detect it and the sender will have to retransmit it

3. Routers connect networks

– Store & forward delivery

– They need not store information about the flow of packets

4. No global (centralized) control of the network

9 September 15, 2016 © 2014-2016 Paul Krzyzanowski

Routers tie LANs together into one Internet

10

Tier 3 ISP

Tier 2 ISP

Tier 1 ISP

Tier 1 ISP
Tier 2 ISP

A packet may pass through many networks – within and between ISPs

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Protocols

11 September 15, 2016 © 2014-2016 Paul Krzyzanowski

What’s in the data?

For effective communication

– same language, same conventions

For computers:

– electrical encoding of data

– where is the start of the packet?

– which bits contain the length?

– is there a checksum? where is it?

how is it computed?

– what is the format of an address?

– byte ordering

These instructions and conventions are known as protocols

12 September 15, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/15/2016

Paul Krzyzanowski 3

Layering

To ease software development and maximize flexibility:

– Network protocols are generally organized in layers

– Replace one layer without replacing surrounding layers

– Higher-level software does not have to know how to format an

Ethernet packet

 … or even know that Ethernet is being used

13 September 15, 2016 © 2014-2016 Paul Krzyzanowski

Layering

Most popular model of guiding

(not specifying) protocol layers is

 OSI reference model

Adopted and created by ISO

7 layers of protocols

14

OSI = Open Systems Interconnection

From the ISO = International Organization for Standardization

September 15, 2016 © 2014-2016 Paul Krzyzanowski

OSI Reference Model: Layer 1

Transmits and receives raw data to

communication medium

Does not care about contents

Media, voltage levels, speed,

connectors

Physical 1

Examples: USB, Bluetooth,
 1000BaseT, Wi-Fi

15

Deals with representing bits

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Data Link

OSI Reference Model: Layer 2

Detects and corrects errors

Organizes data into frames before

passing it down. Sequences

packets (if necessary)

Accepts acknowledgements from

immediate receiver

Physical 1

2

Examples: Ethernet MAC, PPP

16

Deals with frames

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Data Link

OSI Reference Model: Layer 2

An ethernet switch is an example of a device that works on layer 2

It forwards ethernet frames from one host to another as long as the

hosts are connected to the switch (switches may be cascaded)

This set of hosts and switches defines the local area network (LAN)

17

Physical 1

2

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Network

Data Link

OSI Reference Model: Layer 3

Relay and route information to

destination

Manage journey of datagrams and

figure out intermediate hops (if

needed)

Physical 1

2

3

Examples: IP, X.25

18

Deals with datagrams

September 15, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/15/2016

Paul Krzyzanowski 4

Network

Data Link

OSI Reference Model: Layer 3

An IP router is an example of a device that works on layer 3

A router takes an incoming IP packet and determines which interface to

send it out

It enables multiple networks to be connected together

19

Physical 1

2

3

Cisco CRS 4-Slot Single Shelf System

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Transport

Network

Data Link

OSI Reference Model: Layer 4

Provides an interface for end-to-
end (application-to-application)
communication: sends & receives
segments of data. Manages flow
control. May include end-to-end
reliability

Network interface is similar to a
mailbox

Physical 1

2

3

4

Examples: TCP, UDP

20

Deals with segments

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Session

Transport

Network

Data Link

OSI Reference Model: Layer 5

Services to coordinate dialogue
and manage data exchange

Software implemented switch

Manage multiple logical
connections

Keep track of who is talking:
establish & end communications

Physical 1

2

3

4

5

Examples: HTTP 1.1, SSL

21

Deals with data streams

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Presentation

Session

Transport

Network

Data Link

OSI Reference Model: Layer 6

Data representation

Concerned with the meaning of

data bits

Convert between machine

representations

Physical 1

2

3

4

5

6

Examples: XDR, ASN.1, MIME,
JSON, XML

22

Deals with objects

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Application

Presentation

Session

Transport

Network

Data Link

OSI Reference Model: Layer 7

Collection of application-specific
protocols

Physical 1

2

3

4

5

6

7

Examples:
 web (HTTP)
 email (SMTP, POP, IMAP)
 file transfer (FTP)
 directory services (LDAP)

23

Deals with app-specific

protocols

September 15, 2016 © 2014-2016 Paul Krzyzanowski

A layer communicates with its counterpart

24

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical 1

2

3

4

5

6

7

Logical View

September 15, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/15/2016

Paul Krzyzanowski 5

A layer communicates with its counterpart

25

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical 1

2

3

4

5

6

7

Logical View

September 15, 2016 © 2014-2016 Paul Krzyzanowski

A layer communicates with its counterpart

26

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical 1

2

3

4

5

6

7

Logical View

September 15, 2016 © 2014-2016 Paul Krzyzanowski

But really traverses the stack

27

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical 1

2

3

4

5

6

7

What’s really happening

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Internet Protocol

• A set of protocols designed to handle the interconnection

of a large number of local and wide-area networks that

comprise the Internet

• IPv4 & IPv6: network layer

– Other protocols include TCP, UDP, RSVP, ICMP, etc.

– Relies on routing from one physical network to another

– IP is connectionless

• No state needs to be saved at each router

– Survivable design: support multiple paths for data

• … but packet delivery is not guaranteed!

28 September 15, 2016 © 2014-2016 Paul Krzyzanowski

IP vs. OSI stack

29

Application

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Internet protocol stack OSI protocol stack

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Middleware

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Protocol Encapsulation

At any layer

– The higher level protocol headers are just treated like data

– Lower level protocol headers can be ignored

Ethernet payload Ethernet header

C
R

C

IP payload Ethernet header

C
R

C

IP

header

Ethernet header

C
R

C

TCP payload
IP

header

TCP

header

An ethernet switch or ethernet driver sees this:

A router or IP driver sees this:

A TCP driver sees this:

Ethernet header

C
R

C

TCP payload
IP

header

TCP

header

An application sees this:

30 September 15, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/15/2016

Paul Krzyzanowski 6

Client-Server Communication

31 September 15, 2016 © 2014-2016 Paul Krzyzanowski

Addressing machines (data link layer)

Each interface on a host has a unique MAC address

– E.g., aramis.rutgers.edu: 48-bit ethernet address =

 = 00:03:ba:09:1b:b0

• This isn’t too interesting to us as programmers

– We usually don’t communicate at the data link layer

32 September 15, 2016 © 2014-2016 Paul Krzyzanowski

Addressing machines (network layer)

Each interface on a host is given a unique IP address

– IPv4 (still the most common in the U.S.): 32-bit number

• Example, cs.rutgers.edu = 128.6.4.2 = 0x80060402

– IPv6: 128-bit number

• Example, cs.rutgers.edu = 0:0:0:0:0:FFFF:128.6.4.2 =

 = ::FFFF:8006:0402

But we want to talk with applications … not just the hosts

33 September 15, 2016 © 2014-2016 Paul Krzyzanowski

This is a mixed hex/decimal

notation to embed IPv4

addresses

Addressing applications (transport layer)

Communication endpoint at the machine

– Port number: 16-bit number

– Port number = transport endpoint

• Identifies a specific data stream

– Some services use well-known port numbers (0 – 1023)

• IANA: Internet Assigned Numbers Authority (www.iana.org)

• Also see the file /etc/services

 ftp: 21/TCP ssh: 22/tcp smtp: 25/tcp http: 80/tcp ntp: 123/udp

– Ports for proprietary apps: 1024 – 49151

– Dynamic/private ports: 49152 – 65535

• To communicate with applications, we use a transport

layer protocol and an IP address and port number

 34 September 15, 2016 © 2014-2016 Paul Krzyzanowski

IP transport layer protocols

IP gives us two transport-layer protocols for communication

– TCP: Transmission Control Protocol

• Connection-oriented service – operating system keeps state

• Full-duplex connection: both sides can send messages over the same link

• Reliable data transfer: the protocol handles retransmission

• In-order data transfer: the protocol keeps track of sequence numbers

• Flow control: receiver stops sender from sending too much data

• Congestion control: “plays nice” on the network – reduce transmission rate

• 20-byte header

– UDP: User Datagram Protocol

• Connectionless service: lightweight transport layer over IP

• Data may be lost

• Data may arrive out of sequence

• Checksum for corrupt data: operating system drops bad packets

• 8-byte header

 35 September 15, 2016 © 2014-2016 Paul Krzyzanowski

Network API

• App developers need access to the network

• A Network Application Programming Interface (API)

provides this

– Core services provided by the operating system

• Operating System controls access to resources

– Libraries may handle the rest

36 September 15, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/15/2016

Paul Krzyzanowski 7

Programming: connection-oriented protocols

Reliable byte stream service
– provides illusion of having a dedicated circuit

– messages guaranteed to arrive in-order

– application does not have to address each message

1. establish connection

2. [negotiate protocol]

3. exchange data

4. terminate connection

dial phone number

[decide on a language]

speak

hang up

analogous to phone call

37 September 15, 2016 © 2014-2016 Paul Krzyzanowski

Programming: connectionless protocols

Datagram service

– client is not positive whether message arrived at destination

– no state has to be maintained at client or server

– cheaper but less reliable than virtual circuit service

- no call setup

- send/receive data

(each packet addressed)

- no termination

drop letter in mailbox

(each letter addressed)

analogous to mailbox

38 September 15, 2016 © 2014-2016 Paul Krzyzanowski

Sockets

• Dominant API for transport layer connectivity

• Created at UC Berkeley for 4.2BSD Unix (1983)

• Design goals

– Communication between processes should not depend on whether

they are on the same machine

– Communication should be efficient

– Interface should be compatible with files

– Support different protocols and naming conventions

• Sockets is not just for the Internet Protocol family

39 September 15, 2016 © 2014-2016 Paul Krzyzanowski

What is a socket?

Abstract object from which messages are sent and received

– Looks like a file descriptor

– Application can select particular style of communication

• Virtual circuit (connection-oriented), datagram (connectionless),

message-based, in-order delivery

– Unrelated processes should be able to locate communication

endpoints

• Sockets can have a name

• Name should be meaningful in the communications domain

– E.g., Address & port for IP communications

40 September 15, 2016 © 2014-2016 Paul Krzyzanowski

Connection-Oriented (TCP) socket operations

41

Create a socket

Name the socket

(assign local address, port)

Connect to the other side

read / write byte streams

close the socket

Create a socket

Name the socket

(assign local address, port)

Set the socket for listening

Wait for and accept a

connection; get a socket for

the connection

close the socket

read / write byte streams

close the listening socket

Client
Server

socket

bind

connect

read/write

close

socket

bind

listen

accept

read/write

close

close

September 15, 2016 © 2014-2016 Paul Krzyzanowski

Python Example

September 15, 2016 © 2014-2016 Paul Krzyzanowski 42

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.bind((HOST, PORT))

s.listen(5)

while 1:

 conn, addr = s.accept()

 # do work on socket conn

 msg = conn.recv()

s.close

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

remote_addr = socket.gethostbyname(host)

s.connect(remote_addr, port)

s.sendall(message)

…

Note: try/except blocks are missing

CS 417 9/15/2016

Paul Krzyzanowski 8

Java provides shortcuts that combine calls

Example

September 15, 2016 © 2014-2016 Paul Krzyzanowski 43

Socket s = new Socket(“www.rutgers.edu”, 2211)

int s = socket(AF_INET, SOCK_STREAM, 0);

struct sockaddr_in myaddr; /* initialize address structure */

myaddr.sin_family = AF_INET;

myaddr.sin_addr.s_addr = htonl(INADDR_ANY);

myaddr.sin_port = htons(0);

bind(s, (struct sockaddr *)&myaddr, sizeof(myaddr));

/* look up the server's address */

struct hostent *hp; /* host information */

struct sockaddr_in servaddr; /* server address */

memset((char*)&servaddr, 0, sizeof(servaddr));

servaddr.sin_family = AF_INET;

servaddr.sin_port = htons(2211);

hp = gethostbyname(“www.rutgers.edu”);

if (connect(fd, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0) {

 /* connect failed */

}

Java

C

Connectionless (UDP) socket operations

44

Create a socket

Name the socket

(assign local address, port)

Send a message

Receive a message

close the socket

Create a socket

Name the socket

(assign local address, port)

close the socket

Send a message

Receive a message

Client Server

socket

bind

sendto

recvfrom

close

socket

bind

recvfrom

sendto

close

September 15, 2016 © 2014-2016 Paul Krzyzanowski

The end

45 September 15, 2016 © 2014-2016 Paul Krzyzanowski

