
CS 417 9/19/2016

Paul Krzyzanowski 1

Distributed Systems
03. Remote Procedure Calls

Paul Krzyzanowski

Rutgers University

Fall 2016

1 September 19, 2016 © 2014-2016 Paul Krzyzanowski

Socket-based communication

• Socket API: all we get from the OS to access the network

• Socket = distinct end-to-end communication channels

• Read/write model

– Send a bunch of bytes

– Read a bunch of bytes

– Send a bunch of bytes

– Read a bunch of bytes

– …

• Application implements its protocol

• Line-oriented, text-based protocols common

– Not efficient but easy to debug & use

2 September 19, 2016 © 2014-2016 Paul Krzyzanowski

Sample SMTP Interaction

September 19, 2016 © 2014-2016 Paul Krzyzanowski 3

$ telnet cs.rutgers.edu 25

Trying 128.6.4.2...

Connected to cs.rutgers.edu.

Escape character is '^]'.

220 aramis.rutgers.edu ESMTP Sendmail 8.11.7p3+Sun/8.8.8; Mon, 19 Sep 2016 12:12:01 -0400 (EDT)

HELO pk.org

250 aramis.rutgers.edu Hello aramis.rutgers.edu [128.6.4.2], pleased to meet you

MAIL FROM: <pxk@cs.rutgers.edu>

250 2.1.0 <pxk@cs.rutgers.edu>... Sender ok

RCPT TO: <p@pk.org>

250 2.1.5 <p@pk.org>... Recipient ok

DATA

354 Enter mail, end with "." on a line by itself

From: Paul Krzyzanowski <pxk@cs.rutgers.edu>

Subject: test message

Date: Mon, 17 Feb 2020 17:00:16 -0500

To: Whomever <testuser@pk.org>

Hi,

This is a test

.

250 2.0.0 s8FGE2S13883 Message accepted for delivery

quit

221 2.0.0 aramis.rutgers.edu closing connection

This is the message body.

Headers may define the structure of the

message but are ignored for delivery.

SMTP = Simple Mail Transfer Protocol

Problems with the sockets API

The sockets interface forces a read/write mechanism

Programming is often easier with a functional interface

To make distributed computing look more like centralized

computing, I/O (read/write) is not the way to go

4 September 19, 2016 © 2014-2016 Paul Krzyzanowski

RPC

1984: Birrell & Nelson
– Mechanism to call procedures on other machines

Remote Procedure Call

Goal: it should appear to the programmer that a

normal call is taking place

5 September 19, 2016 © 2014-2016 Paul Krzyzanowski

Regular procedure calls

You write:

x = f(a, “test”, 5);

The compiler parses this and generates code to:

a. Push the value 5 on the stack

b. Push the address of the string “test” on the stack

c. Push the current value of a on the stack

d. Generate a call to the function f

In compiling f, the compiler generates code to:

a. Push registers that will be clobbered on the stack to save the values

b. Adjust the stack to make room for local and temporary variables

c. Before a return, unadjust the stack, put the return data in a register, and

issue a return instruction

6 September 19, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/19/2016

Paul Krzyzanowski 2

Implementing RPC

No architectural support for remote procedure calls

Simulate it with tools we have

(local procedure calls)

Simulation makes RPC a

 language-level construct

instead of an

 operating system construct

The OS gives us

sockets

The compiler

creates code to

send messages to

invoke remote

functions

7 September 19, 2016 © 2014-2016 Paul Krzyzanowski

Implementing RPC

The trick:

Create stub functions

to make it appear to the user that the call is local

On the client

 The stub function has the function’s interface

 Packages parameters and calls the server

On the server

 The stub function (skeleton) receives the request and calls the

local function

8 September 19, 2016 © 2014-2016 Paul Krzyzanowski

client server

Stub functions

network routines

server functions

server stub

(skeleton)

network routines

1. Client calls stub (params on stack)

client functions

client stub

(proxy)

9 September 19, 2016 © 2014-2016 Paul Krzyzanowski

OS OS

client server

Stub functions

server functions

server stub

(skeleton)

network routines

2. Stub marshals params to net message

client functions

client stub

(proxy)

network routines

Marshalling = put parameters in a form suitable for transmission over a network (serialized)

10 September 19, 2016 © 2014-2016 Paul Krzyzanowski

OS OS

client server

Stub functions

3. Network message sent to server

client functions

client stub

(proxy)

network routines

server functions

server stub

(skeleton)

network routines

11 September 19, 2016 © 2014-2016 Paul Krzyzanowski

OS OS

client server

Stub functions

4. Receive message: send it to server stub

client functions

client stub

(proxy)

network routines

server functions

server stub

(skeleton)

network routines

12 September 19, 2016 © 2014-2016 Paul Krzyzanowski

OS OS

CS 417 9/19/2016

Paul Krzyzanowski 3

client server

Stub functions

5. Unmarshal parameters, call server function

client functions

client stub

(proxy)

network routines

server functions

server stub

(skeleton)

network routines

13 September 19, 2016 © 2014-2016 Paul Krzyzanowski

OS OS

client server

Stub functions

6. Return from server function

client functions

client stub

(proxy)

network routines

server functions

server stub

(skeleton)

network routines

14 September 19, 2016 © 2014-2016 Paul Krzyzanowski

OS OS

client server

Stub functions

7. Marshal return value and send message

client functions

client stub

(proxy)

network routines

server functions

server stub

(skeleton)

network routines

15 September 19, 2016 © 2014-2016 Paul Krzyzanowski

OS OS

client server

Stub functions

8. Transfer message over network

client functions

client stub

(proxy)

network routines

server functions

server stub

(skeleton)

network routines

16 September 19, 2016 © 2014-2016 Paul Krzyzanowski

OS OS

client server

Stub functions

9. Receive message: client stub is receiver

client functions

client stub

(proxy)

network routines

server functions

server stub

(skeleton)

network routines

17 September 19, 2016 © 2014-2016 Paul Krzyzanowski

OS OS

client server

Stub functions

10. Unmarshal return value(s), return to client code

client functions

network routines

server functions

server stub

(skeleton)

network routines

18

client stub

(proxy)

September 19, 2016 © 2014-2016 Paul Krzyzanowski

OS OS

CS 417 9/19/2016

Paul Krzyzanowski 4

A client proxy looks like the remote function

• Client stub has the same interface as the remote function

• Looks & feels like the remote function to the programmer

– But its function is to

• Marshal parameters

• Send the message

• Wait for a response from the server

• Unmarshal the response & return the appropriate data

• Generate exceptions if problems arise

19 September 19, 2016 © 2014-2016 Paul Krzyzanowski

A server stub contains two parts

• Dispatcher – the listener

– Receives client requests

– Identifies appropriate function (method)

• Skeleton – the unmarshaller & caller

– Unmarshals parameters

– Calls the local server procedure

– Marshals the response & sends it back to the dispatcher

• All this is invisible to the programmer

– The programmer doesn’t deal with any of this

– Dispatcher + Skeleton may be integrated

• Depends on implementation

20 September 19, 2016 © 2014-2016 Paul Krzyzanowski

RPC Benefits

• RPC gives us a procedure call interface

• Writing applications is simplified

– RPC hides all network code into stub functions

– Application programmers don’t have to worry about details

• Sockets, port numbers, byte ordering

• Where is RPC in the OSI model?

– Layer 5: Session layer: Connection management

– Layer 6: Presentation: Marshaling/data representation

– Uses the transport layer (4) for communication (TCP/UDP)

21 September 19, 2016 © 2014-2016 Paul Krzyzanowski

RPC has challenges

22 September 19, 2016 © 2014-2016 Paul Krzyzanowski

Parameter passing

Pass by value

– Easy: just copy data to network message

Pass by reference

– Makes no sense without shared memory

23 September 19, 2016 © 2014-2016 Paul Krzyzanowski

Pass by reference?

1. Copy items referenced to message buffer

2. Ship them over

3. Unmarshal data at server

4. Pass local pointer to server stub function

5. Send new values back

To support complex structures

– Copy structure into pointerless representation

– Transmit

– Reconstruct structure with local pointers on server

24 September 19, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/19/2016

Paul Krzyzanowski 5

Where to bind?

Need to locate host and correct server process

25 September 19, 2016 © 2014-2016 Paul Krzyzanowski

Where to bind? – Solution 1

Maintain a centralized DB that can

locate a host that provides a particular service

(Birrell & Nelson’s 1984 proposal)

Challenges:

– Who administers this?

– What is the scope of administration?

– What if the same services run on different machines

(e.g., file systems)?

September 19, 2016 © 2014-2016 Paul Krzyzanowski 26

Where to bind? – Solution 2

A server on each host maintains a DB of locally provided

services

27 September 19, 2016 © 2014-2016 Paul Krzyzanowski

Transport protocol

TCP or UDP? Which one should we use?

• Some implementations may offer only one

(e.g. TCP)

• Most support several

– Allow programmer (or end user) to choose at runtime

28 September 19, 2016 © 2014-2016 Paul Krzyzanowski

When things go wrong

• Local procedure calls do not fail
– If they core dump, entire process dies

• More opportunities for error with RPC

• Transparency breaks here
– Applications should be prepared to deal with RPC failure

29 September 19, 2016 © 2014-2016 Paul Krzyzanowski

When things go wrong

• Semantics of remote procedure calls

– Local procedure call: exactly once

• A remote procedure call may be called:

– 0 times:

 server crashed or server process died before executing

 server code

– 1 time:

 everything worked well, as expected

– 1 or more times: excess latency or lost reply from server and client

retransmission

30 September 19, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/19/2016

Paul Krzyzanowski 6

RPC semantics

• Most RPC systems will offer either:

– at least once semantics

– or at most once semantics

• Understand application:

– idempotent functions: may be run any number of times without harm

– non-idempotent functions: those with side-effects

• Try to design your application to be idempotent

– Not always easy!

– Store transaction IDs, previous return data, etc.

31 September 19, 2016 © 2014-2016 Paul Krzyzanowski

More issues

Performance

– RPC is slower … a lot slower (why?)

Security

– messages may be visible over network – do we need to hide them?

– Authenticate client?

– Authenticate server?

32 September 19, 2016 © 2014-2016 Paul Krzyzanowski

Programming with RPC

Language support

– Many programming languages have no language-level concept of

remote procedure calls

(C, C++, Java <J2SE 5.0, …)

• These compilers will not automatically generate client and server stubs

– Some languages have support that enables RPC

(Java, Python, Haskell, Go, Erlang)

• But we may need to deal with heterogeneous environments (e.g., Java

communicating via XML)

Common solution

– Interface Definition Language (IDL): describes remote procedures

– Separate compiler that generate stubs (pre-compiler)

33 September 19, 2016 © 2014-2016 Paul Krzyzanowski

Interface Definition Language (IDL)

• Allow programmer to specify remote procedure interfaces

(names, parameters, return values)

• Pre-compiler can use this to generate client and server stubs

– Marshaling code

– Unmarshaling code

– Network transport routines

– Conform to defined interface

• An IDL looks similar to function prototypes

34 September 19, 2016 © 2014-2016 Paul Krzyzanowski

RPC compiler

IDL
RPC

compiler

client code (main)

server functions

client stub

headers

server skeleton

data conversion

data conversion compiler

compiler server

client

Code you write

Code RPC compiler generates

35 September 19, 2016 CS 417 - Paul Krzyzanowski

Writing the program

• Client code has to be modified

– Initialize RPC-related options

• Identify transport type

• Locate server/service

– Handle failure of remote procedure calls

• Server functions

– Generally need little or no modification

36 September 19, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/19/2016

Paul Krzyzanowski 7

RPC API

What kind of services does an RPC system need?

• Name service operations

– Export/lookup of binding information (ports, machines)

– Support dynamic ports

• Binding operations

– Establish client/server communications using appropriate protocol

(establish endpoints)

• Endpoint operations

– Listen for requests, export endpoint to name server

(often the main program on the server)

37 September 19, 2016 © 2014-2016 Paul Krzyzanowski

RPC API

What kind of services does an RPC system need?

• Security operations

– Authenticate client/server

• Internationalization operations (maybe)

• Marshaling/data conversion operations

• Stub memory management

– Dealing with “reference” data, temporary buffers

• Program ID operations

– Allow applications to access IDs of RPC interfaces

– Can you pass references to remote functions to other processes?

38 September 19, 2016 © 2014-2016 Paul Krzyzanowski

Sending data over the network

September 19, 2016 © 2014-2016 Paul Krzyzanowski 39

We need a stream of bytes

struct item {

 char name[64];

 unsigned long id;

 int number_in_stock;

 float rating;

 double price;

} scratcher = {

 "Bear Claw Black Telescopic Back Scratcher",

 00120,

 332,

 4.6,

 5.99

}

42 65 61 72 20 43 6c 61 77 20 42 6c 61 63 6b 20 54 ...

September 19, 2016 © 2014-2016 Paul Krzyzanowski 40

Representing data

No such thing as

incompatibility problems on local system

Remote machine may have:

– Different byte ordering

– Different sizes of integers and other types

– Different floating point representations

– Different character sets

– Alignment requirements

41 September 19, 2016 © 2014-2016 Paul Krzyzanowski

Representing data

IP (headers) forced all to use big endian byte ordering for 16- and 32-bit values

Big endian: Most significant byte in low memory

– SPARC < V9, Motorola 680x0, older PowerPC

Little endian: Most significant byte in high memory

– Intel/AMD IA-32, x64

Bi-endian: Processor may operate in either mode

– ARM, PowerPC, MIPS, SPARC V9, IA-64 (Intel Itanium)

 main() {

 unsigned int n;

 char *a = (char *)&n;

 n = 0x11223344;

 printf("%02x, %02x, %02x, %02x\n",

 a[0], a[1], a[2], a[3]);

}

Output on an Intel:
44, 33, 22, 11

Output on a PowerPC:
11, 22, 33, 44

42

IP headers use big endian

September 19, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/19/2016

Paul Krzyzanowski 8

Representing data: serialization

Need standard encoding to enable communication between

heterogeneous systems

• Serialization

– Convert data into a pointerless format: an array of bytes

• Examples

– XDR (eXternal Data Representation), used by ONC RPC

– JSON (JavaScript Object Notation)

– W3C XML Schema Language

– ASN.1 (ISO Abstract Syntax Notation)

– Google Protocol Buffers

September 19, 2016 © 2014-2016 Paul Krzyzanowski 43

Serializing data

Implicit typing

– only values are transmitted, not data types or parameter info

– e.g., ONC XDR (RFC 4506)

Explicit typing

– Type is transmitted with each value

– e.g., ISO’s ASN.1, XML, protocol buffers, JSON

44 September 19, 2016 © 2014-2016 Paul Krzyzanowski

Marshaling vs. serialization – almost synonymous:

Serialization: converting an object into a sequence of bytes that can be sent over a

network

Marshaling: bundling parameters into a form that can be reconstructed (unmarshaled) by

another process. May include object ID or other state. Marshaling uses

serialization.

XML: eXtensible Markup Language

<ShoppingCart>

 <Items>

 <Item>

 <ItemID> 00120 </ItemID>

 <Item> Bear Claw Black Telescopic Back Scratcher </Item>

 <Price> 5.99 </Price>

 </Item>

 <ItemID> 00121 </ItemID>

 <Item> Scalp Massager </Item>

 <Price> 5.95 </Price>

 </Items>

</ShoppingCart>

September 19, 2016 © 2014-2016 Paul Krzyzanowski 45

Benefits:

–Human-readable

–Human-editable

– Interleaves structure with text (data)

JSON: JavaScript Object Notation

• Lightweight (relatively efficient) data interchange format

– Introduced as the “fat-free alternative to XML”

– Based on JavaScript

• Human writeable and readable

• Self-describing (explicitly typed)

• Language independent

• Easy to parse

• Currently converters for 50+ languages

• Includes support for RPC invocation via JSON-RPC

September 19, 2016 © 2014-2016 Paul Krzyzanowski 46

JSON Example

47

{"menu": {

 "id": "file",

 "value": "File",

 "popup": {

 "menuitem": [

 {"value": "New", "onclick": "CreateNewDoc()"},

 {"value": "Open", "onclick": "OpenDoc()"},

 {"value": "Close", "onclick": "CloseDoc()"}

]

 }

}}

from json.org/example.html

September 19, 2016 © 2014-2016 Paul Krzyzanowski

Google Protocol Buffers

• Efficient mechanism for serializing structured data

– Much simpler, smaller, and faster than XML

• Language independent

• Define messages

– Each message is a set of names and types

• Compile the messages to generate data access classes

for your language

• Used extensively within Google. Currently over 48,000

different message types defined.

– Used both for RPC and for persistent storage

 September 19, 2016 © 2014-2016 Paul Krzyzanowski 48

CS 417 9/19/2016

Paul Krzyzanowski 9

Example (from the Developer Guide)

http://code.google.com/apis/protocolbuffers/docs/overview.html

message Person {

 required string name = 1;

 required int32 id = 2;

 optional string email = 3;

 enum PhoneType {

 MOBILE = 0;

 HOME = 1;

 WORK = 2;

 }

 message PhoneNumber {

 required string number = 1;
 optional PhoneType type = 2 [default = HOME];

 }

 repeated PhoneNumber phone = 4;

}

September 19, 2016 © 2014-2016 Paul Krzyzanowski 49

Example (from the Developer Guide)

http://code.google.com/apis/protocolbuffers/docs/overview.html

Person person;

person.set_name("John Doe");

person.set_id(1234);

person.set_email("jdoe@example.com");

fstream output("myfile", ios::out | ios::binary);

person.SerializeToOstream(&output);

September 19, 2016 © 2014-2016 Paul Krzyzanowski 50

Efficiency example (from the Developer Guide)

• Binary encoded message: ~28 bytes long, 100-200 ns to parse

• XML version: ≥69 bytes, 5,000-10,000 ns to parse

http://code.google.com/apis/protocolbuffers/docs/overview.html

<person>

 <name>John Doe</name>

 <email>jdoe@example.com</email>

</person>

person {

 name: "John Doe"

 email: "jdoe@example.com"

}

XML version Text (uncompiled) protocol buffer

September 19, 2016 © 2014-2016 Paul Krzyzanowski 51

The End

September 19, 2016 52 © 2014-2016 Paul Krzyzanowski

