
CS 417 November 5, 2014

© Paul Krzyzanowski 1

Distributed Systems

04r. Assignment 3 review

Paul Krzyzanowski

Rutgers University

Fall 2016

1 October 1, 2016 © 2016 Paul Krzyzanowski

Question 1

Two events are concurrent if neither can causally affect the

other.

October 1, 2016 2

How does Lamport define concurrent events?

© 2016 Paul Krzyzanowski

Question 2

“In order for vector clock B to be considered a descendant of vector

clock A, each marker in clock A must have a corresponding marker in

clock B that has a revision number greater than or equal to the marker

in A.”

Marker = process ID; Revision # = sequence #

Vector clock = set of <process_id, sequence> tuples

{ <alice, 4>, <bob, 5>, <alic

October 1, 2016 3

From the Why Vector Clocks are Easy paper, how can you tell if one vector

clock is a descendent of another vector clock?

© 2016 Paul Krzyzanowski

Question 2 – examples

B = { <alice, 4>, <bob, 5>}

A = { <alice, 2> }

B is a descendent of A (A→B; A happened before B)

 because no element of A is greater the corresponding element of B

 A is missing ”bob”, so it is implicitly <bob, 0>

B = { <alice, 3>, <bob, 5>, <cindy, 2> }

A = { <alice, 2>, <bob, 4>, <cindy, 3> }

A & B are concurrent events (hence, a conflict). “alice” and “bob” have

greater values in B but “cindy” has a smaller value.

October 1, 2016 4

From the Why Vector Clocks are Easy paper, how can you tell if one vector

clock is a descendent of another vector clock?

© 2016 Paul Krzyzanowski

Question 3

Read section 8 of the NTP RFC (RFC 5905):

 Offset, θ = ½ * ((T2 – T1) + (T3 – T4)) =

 = ½ * (11:59.900 – 12:10.100) + (11:59.920 – 12.10.150) =

 = ½ * (-10.200) + (-10.230) = ½ * (-20.430) = -10.215

Time = 7:12:10.150 + -10.215 = 7:11:59.935

October 1, 2016 5

You have the following timestamps:

Time is expressed as hours:minutes:seconds.decimal_seconds

In the case of a client synchronizing with the server, A refers to the client and B

refers to the server in the NTP RFC. Using NTP, what is the new time (add the

offset, theta, to the client receives response time)?

Client request sent: 7:12:10.100

Client receives response: 7:12.10.150

Server receives request: 7:11:59.900

Server sends response: 7:11:59.920

←T1

←T4

←T2

←T3

© 2016 Paul Krzyzanowski

Question 4

October 1, 2016 6

The table shows ten events (a, b, ..., j) taking place among three processes.

Assign Lamport timestamps to each event.

The event clock on each process is initialized to zero at the beginning and

incremented prior to timestamping each event. For instance, the clock on P0

starts at 0 and event a gets assigned a Lamport timestamp of 1.

1 2

3

1

If f was an isolated event on P1, it

would get a Lamport timestamp = 1

Since the event is the receipt of a

message sent from P0 with

timestamp = 2, f has to be set to

max(2+1, 1) = 3 to enforce the b→f

relationship.

Lamport’s “happens before” relationship:

a→b means “event a happens before b”

© 2016 Paul Krzyzanowski

CS 417 November 5, 2014

© Paul Krzyzanowski 2

Question 4

October 1, 2016 7

1 2 3 5 6

3 4

2 2 2

If f was an isolated event on P0, it

would get a Lamport timestamp = 4

(timestamp of event c + 1).

Since the event is the receipt of a

message sent from P1 with

timestamp = 4, d has to be set to

max(4+1, 4) = 5 to enforce the g→d

relationship.

a. 1 b. 2 c. 3 d. 5 e. 6

f. 3 g. 4 h. 1 i. 4 j. 5

© 2016 Paul Krzyzanowski

Question 4

October 1, 2016 © 2016 Paul Krzyzanowski 8

Using the same set of events as in the previous question, assign vector

timestamps to each event. The event clock vector at each process is initialized to

all zeros at the beginning and a process increments its position in the vector

prior to timestamping each event. Process positions in the vector are (P0, P1, P2).

(1, 0, 0)
Increment per-process counter

in the vector prior to each

event.

For received messages with

received vector r, new vector =

 v[process_id]++;

 for (i = 0; i < #elements; ++i)

 v[i] = max(v[i], r[i])

(2, 0, 0) (3, 0, 0)

(2, 1, 0)

Vector is (P0, P1, P2)

Event f would have been (0,1,0) if it was isolated. Since it’s the receipt of a message,

We set the vector to (max(0,2), max(1,0), max(0,0)) = (2, 1, 0)

Question 4

October 1, 2016 © 2016 Paul Krzyzanowski 9

Using the same set of events as in the previous question, assign vector

timestamps to each event. The event clock vector at each process is initialized to

all zeros at the beginning and a process increments its position in the vector

prior to timestamping each event. Process positions in the vector are (P0, P1, P2).

a. (1,0,0) b. (2,0,0) c. (3,0,0) d. (4,2,0) e. (5,2,3)

f. (2,1,0) g. (2,2,0) h. (0,0,1) i. (3,0,2) j. (3,0,3)

(3,0,2) (0, 0, 1)

(1, 0, 0)

(2,2,0)

Increment per-process counter

in the vector prior to each

event.

For received messages with

received vector r, new vector =

 v[process_id]++;

 for (i = 0; i < #elements; ++i)

 v[i] = max(v[i], r[i])

(2, 0, 0) (3, 0, 0)

(2, 1, 0)

(4, 2, 0)

(3,0,3)

(5, 2, 3)

Question 5

October 1, 2016 © 2016 Paul Krzyzanowski 10

Based on the vector timestamps, which events are causally dependent on event

c (that is, which events follow c and are causally related)?

a. (1,0,0) b. (2,0,0) c. (3,0,0) d. (4,2,0) e. (5,2,3)

f. (2,1,0) g. (2,2,0) h. (0,0,1) i. (3,0,2) j. (3,0,3)

For two events to be causally dependent on each other, every element of one

vector have to be ≥ the corresponding element of the other vector:

 for (i=0; i<#elements; ++i)

 if (a[i] < b[i]) smaller = 1

 if (a[i] > b[i]) larger = 1

 if ((smaller == 1) && (larger == 1))

 concurrent
 else

 causal

We need to find events that are > event c.

Question 5

October 1, 2016 © 2016 Paul Krzyzanowski 11

Based on the vector timestamps, which events are causally dependent on event

c (that is, which events follow c and are causally related)?

a. (1,0,0) b. (2,0,0) c. (3,0,0) d. (4,2,0) e. (5,2,3)

f. (2,1,0) g. (2,2,0) h. (0,0,1) i. (3,0,2) j. (3,0,3)

We need to find events that are > event c.

c = (3, 0, 0)

a. (1, 0, 0) < (3, 0, 0) – causal but a < c

b. (2, 0, 0) < (3, 0, 0) – causal but b < c

d. (4, 2, 0) > (3, 0, 0) – causal and > c

e. (5, 2, 3) > (3, 0, 0) – causal and ed > c

f. (2, 1, 0) ≰ (3, 0, 0) and (2, 1, 0) ≱ (3, 0, 0) – concurrent

g. (2, 2, 0) ≰ (3, 0, 0) and (2, 2, 0) ≱ (3, 0, 0) – concurrent

h. (0, 0, 1) ≰ (3, 0, 0) and (0, 0, 1) ≱ (3, 0, 0) – concurrent

i. (3, 0, 2) > (3, 0, 0) – causal and i > c

j. (3, 0, 3) > (3, 0, 0) – causal and i > c

The set of events that

causally follow c are:

 d, e, i, j

The End

October 1, 2016 12 © 2016 Paul Krzyzanowski

