
Distributed Systems
04r. Assignment 3 review

Paul Krzyzanowski

Rutgers University

Fall 2016

1October 6, 2016 © 2016 Paul Krzyzanowski

Question 1

Two events are concurrent if neither can causally affect the
other.

October 6, 2016 2

How does Lamport define concurrent events?

© 2016 Paul Krzyzanowski

Question 2

“In order for vector clock B to be considered a descendant of vector
clock A, each marker in clock A must have a corresponding marker in
clock B that has a revision number greater than or equal to the marker
in A.”

Marker = process ID; Revision # = sequence #
Vector clock = set of <process_id, sequence> tuples

{ <alice, 4>, <bob, 5>, <alic

October 6, 2016 3

From the Why Vector Clocks are Easy paper, how can you tell if one vector
clock is a descendent of another vector clock?

© 2016 Paul Krzyzanowski

Question 2 – examples

B = { <alice, 4>, <bob, 5>}

A = { <alice, 2> }

B is a descendent of A (A→B; A happened before B)

because no element of A is greater the corresponding element of B
A is missing ”bob”, so it is implicitly <bob, 0>

B = { <alice, 3>, <bob, 5>, <cindy, 2> }

A = { <alice, 2>, <bob, 4>, <cindy, 3> }

A & B are concurrent events (hence, a conflict). “alice” and “bob” have
greater values in B but “cindy” has a smaller value.

October 6, 2016 4

From the Why Vector Clocks are Easy paper, how can you tell if one vector
clock is a descendent of another vector clock?

© 2016 Paul Krzyzanowski

Question 3

Read section 8 of the NTP RFC (RFC 5905):

Offset, θ = ½ * ((T2 – T1) + (T3 – T4)) =

= ½ * (11:59.900 – 12:10.100) + (11:59.920 – 12.10.150) =

= ½ * (-10.200) + (-10.230) = ½ * (-20.430) = -10.215

Time = 7:12:10.150 + -10.215 = 7:11:59.935
October 6, 2016 5

You have the following timestamps:

Time is expressed as hours:minutes:seconds.decimal_seconds
In the case of a client synchronizing with the server, A refers to the client and B
refers to the server in the NTP RFC. Using NTP, what is the new time (add the
offset, theta, to the client receives response time)?

Client request sent: 7:12:10.100

Client receives response: 7:12.10.150
Server receives request: 7:11:59.900
Server sends response: 7:11:59.920

←T1

←T4

←T2

←T3

© 2016 Paul Krzyzanowski

Question 4

October 6, 2016 6

The table shows ten events (a, b, ..., j) taking place among three processes.
Assign Lamport timestamps to each event.
The event clock on each process is initialized to zero at the beginning and
incremented prior to timestamping each event. For instance, the clock on P0
starts at 0 and event a gets assigned a Lamport timestamp of 1.

1 2

3

1

If f was an isolated event on P1, it
would get a Lamport timestamp = 1
Since the event is the receipt of a
message sent from P0 with
timestamp = 2, f has to be set to
max(2+1, 1) = 3 to enforce the b→f
relationship.

Lamport’s “happens before” relationship:
a→b means “event a happens before b”

© 2016 Paul Krzyzanowski

Question 4

October 6, 2016 7

1 2 3 5 6

3 4

2 2 2

If f was an isolated event on P0, it
would get a Lamport timestamp = 4
(timestamp of event c + 1).

Since the event is the receipt of a
message sent from P1 with
timestamp = 4, d has to be set to
max(4+1, 4) = 5 to enforce the g→d
relationship.

a. 1 b. 2 c. 3 d. 5 e. 6
f. 3 g. 4 h. 1 i. 4 j. 5

© 2016 Paul Krzyzanowski

Question 4

October 6, 2016 © 2016 Paul Krzyzanowski 8

Using the same set of events as in the previous question, assign vector
timestamps to each event. The event clock vector at each process is initialized to
all zeros at the beginning and a process increments its position in the vector
prior to timestamping each event. Process positions in the vector are (P0, P1, P2).

(1, 0, 0) Increment per-process counter
in the vector prior to each
event.

For received messages with
received vector r, new vector =
v[process_id]++;
for (i = 0; i < #elements; ++i)

v[i] = max(v[i], r[i])

(2, 0, 0) (3, 0, 0)

(2, 1, 0)

Vector is (P0, P1, P2)
Event f would have been (0,1,0) if it was isolated. Since it’s the receipt of a message,
We set the vector to (max(0,2), max(1,0), max(0,0)) = (2, 1, 0)

Question 4

October 6, 2016 © 2016 Paul Krzyzanowski 9

Using the same set of events as in the previous question, assign vector
timestamps to each event. The event clock vector at each process is initialized to
all zeros at the beginning and a process increments its position in the vector
prior to timestamping each event. Process positions in the vector are (P0, P1, P2).

a. (1,0,0) b. (2,0,0) c. (3,0,0) d. (4,2,0) e. (5,2,3)
f. (2,1,0) g. (2,2,0) h. (0,0,1) i. (3,0,2) j. (3,0,3)

(3,0,2)(0, 0, 1)

(1, 0, 0)

(2,2,0)

Increment per-process counter
in the vector prior to each
event.

For received messages with
received vector r, new vector =
v[process_id]++;
for (i = 0; i < #elements; ++i)

v[i] = max(v[i], r[i])

(2, 0, 0) (3, 0, 0)

(2, 1, 0)

(4, 2, 0)

(3,0,3)

(5, 2, 3)

Question 5

October 6, 2016 © 2016 Paul Krzyzanowski 10

Based on the vector timestamps, which events are causally dependent on event
c (that is, which events follow c and are causally related)?

a. (1,0,0) b. (2,0,0) c. (3,0,0) d. (4,2,0) e. (5,2,3)
f. (2,1,0) g. (2,2,0) h. (0,0,1) i. (3,0,2) j. (3,0,3)

For two events to be causally dependent on each other, every element of one
vector have to be ≥ the corresponding element of the other vector:

for (i=0; i<#elements; ++i)
if (a[i] < b[i]) smaller = 1
if (a[i] > b[i]) larger = 1

if ((smaller == 1) && (larger == 1))
concurrent

else
causal

We need to find events that are > event c.

Question 6

October 6, 2016 © 2016 Paul Krzyzanowski 11

Based on the vector timestamps, which events are causally dependent on event
c (that is, which events follow c and are causally related)?

a. (1,0,0) b. (2,0,0) c. (3,0,0) d. (4,2,0) e. (5,2,3)
f. (2,1,0) g. (2,2,0) h. (0,0,1) i. (3,0,2) j. (3,0,3)

We need to find events that are > event c.
c = (3, 0, 0)

a. (1, 0, 0) < (3, 0, 0) – causal but a < c
b. (2, 0, 0) < (3, 0, 0) – causal but b < c
d. (4, 2, 0) > (3, 0, 0) – causal and > c
e. (5, 2, 3) > (3, 0, 0) – causal and ed > c
f. (2, 1, 0) � (3, 0, 0) and (2, 1, 0) � (3, 0, 0) – concurrent
g. (2, 2, 0) � (3, 0, 0) and (2, 2, 0) � (3, 0, 0) – concurrent
h. (0, 0, 1) � (3, 0, 0) and (0, 0, 1) � (3, 0, 0) – concurrent
i. (3, 0, 2) > (3, 0, 0) – causal and i > c
j. (3, 0, 3) > (3, 0, 0) – causal and i > c

The set of events that
causally follow c are:
d, e, i, j

The End

October 6, 2016 12© 2016 Paul Krzyzanowski

