
CS 417 9/28/2016

Paul Krzyzanowski 1

Distributed Systems
08. Mutual Exclusion & Election Algorithms

Paul Krzyzanowski

Rutgers University

Fall 2016

1 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Process Synchronization

• Techniques to coordinate execution among processes

– One process may have to wait for another

– Shared resource (e.g. critical section) may require exclusive access

2 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Centralized Systems

• Achieve mutual exclusion via:

– Test & set in hardware

– Semaphores

– Messages (inter-process)

– Condition variables

3 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Distributed Mutual Exclusion

• Assume there is agreement on how a resource is identified

– Pass the identifier with requests

– e.g., lock(“printer”), lock(“table:employees”),

 lock(“table:employees;row:15”)

• Goal:

Create an algorithm to allow a process to request and

obtain exclusive access to a resource that is available on

the network.

4 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Categories of algorithms

• Centralized

– A process can access a resource because a central coordinator

allowed it to do so

• Token-based

– A process can access a resource if it is holding a token permitting it

to do so

• Contention-based

– An process can access a resource via distributed agreement

5 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Centralized algorithm

• Mimic single processor system

• One process elected as coordinator

P

C request(R)

grant(R)

1. Request resource

2. Wait for response

3. Receive grant

4. access resource

5. Release resource

release(R)

6 September 28, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/28/2016

Paul Krzyzanowski 2

Centralized algorithm

• If another process claimed resource:

– Coordinator does not reply until release

– Maintain queue

• Service requests in FIFO order

P0

C
request(R)

grant(R)

release(R) P1

P2

request(R)

Queue

P1

request(R)

P2

grant(R)

7 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Centralized algorithm

Benefits

• Fair: All requests processed in order

• Easy to implement, understand, verify

Problems

• Process cannot distinguish being blocked from a dead

coordinator

• Centralized server can be a bottleneck

8 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Token Ring algorithm

• Assume known group of processes

– Some ordering can be imposed on group (unique process IDs)

– Construct logical ring in software

– Process communicates with its neighbor

P0

P1

P2

P3

P4

P5

9 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Token Ring algorithm

• Initialization

– Process 0 creates a token for resource R

• Token circulates around ring

– From Pi to P(i+1)mod N

• When process acquires token

– Checks to see if it needs to enter critical section

– If no, send ring to neighbor

– If yes, access resource

• Hold token until done

P0

P1

P2

P3

P4

P5

token(R)

10 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R

11 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5
Your turn to access

resource R

12 September 28, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/28/2016

Paul Krzyzanowski 3

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access

resource R

13 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R

14 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access

resource R

15 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5 Your turn to access

resource R

16 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R

17 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5
Your turn to access

resouce R

18 September 28, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/28/2016

Paul Krzyzanowski 4

Token Ring algorithm summary

• Only one process at a time has token

– Mutual exclusion guaranteed

• Order well-defined (but not necessarily first-come, first-served)

– Starvation cannot occur

– Lack of FCFS ordering may be undesirable sometimes

• If token is lost (e.g., process died)

– It will have to be regenerated

– Detecting loss may be a problem

(is the token lost or in just use by someone?)

19 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Lamport’s Mutual Exclusion

• Each process maintains request queue

– Queue contains mutual exclusion requests

– Messages are sent reliably and in FIFO order

– Each message is time stamped with totally ordered Lamport

timestamps

• Ensures that each timestamp is unique

• Every node can make the same decision by comparing timestamps

– Queues are sorted by message timestamps

20 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Lamport’s Mutual Exclusion

Request a critical section:

– Process Pi sends request(i, Ti) to all nodes

• … and places request on its own queue

– When a process Pj receives a request:

• It returns a timestamped ack

• Places the request on its request queue

Enter a critical section (accessing resource):

– Pi has received acks from everyone

– Pi’s request has the earliest timestamp in its queue

Release a critical section:

– Process Pi removes its request from its queue

– sends release(i, Ti) to all nodes

– Each process now checks if its request is the earliest in its queue

• If so, that process now has the critical section

Lamport time

21

Process Time stamp

P4 1021

P8 1022

P1 3944

P6 8201

P12 9638

Sample request queue

Identical at each process

September 28, 2016 © 2014-2016 Paul Krzyzanowski

Lamport’s Mutual Exclusion

• N points of failure

• A lot of messaging traffic

– Requests & releases are sent to the entire group

• Not great … but demonstrates that a fully distributed

algorithm is possible

22 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Ricart & Agrawala algorithm

• Distributed algorithm using reliable multicast and logical

clocks

• When a process wants to enter critical section:

1. Compose message containing:

• Identifier (machine ID, process ID)

• Name of resource

• Timestamp (e.g., totally-ordered Lamport)

2. Reliably multicast request to all processes in group

3. Wait until everyone gives permission

4. Enter critical section / use resource

23 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Ricart & Agrawala algorithm

• When process receives request:

– If receiver not interested:

• Send OK to sender

– If receiver is in critical section

• Do not reply; add request to queue

– If receiver just sent a request as well: (potential race condition)

• Compare timestamps on received & sent messages

• Earliest wins

• If receiver is loser, send OK

• If receiver is winner, do not reply, queue it

• When done with critical section

– Send OK to all queued requests

24 September 28, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/28/2016

Paul Krzyzanowski 5

Ricart & Agrawala algorithm

• Not great either

– N points of failure

– A lot of messaging traffic

– Also demonstrates that a fully distributed algorithm is possible

25 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Lamport vs. Ricart & Agrawala

• Lamport

– Everyone responds (acks) … always – no hold-back

– 3(N-1) messages

• Request – ACK – Release

– Process decides to go based on whether its request is the earliest in

its queue

• Ricart & Agrawala

– If you are in the critical section (or won a tie)

• Don’t respond with an ACK until you are done with the critical section

– 2(N-1) messages

• Request – ACK

– Process decides to go if it gets ACKs from everyone

26 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Election algorithms

27 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Elections

• Need one process to act as coordinator

• Processes have no distinguishing characteristics

• Each process can obtain a unique ID

28 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Bully algorithm

• Select process with largest ID as coordinator

• When process P detects dead coordinator:

– Send election message to all processes with higher IDs.

• If nobody responds, P wins and takes over.

• If any process responds, P’s job is done.

– Optional: Let all nodes with lower IDs know an election is taking

place.

• If process receives an election message

– Send OK message back

– Hold election (unless it is already holding one)

29 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Bully algorithm

• A process announces victory by sending all processes a

message telling them that it is the new coordinator

• If a dead process recovers, it holds an election to find the

coordinator.

30 September 28, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/28/2016

Paul Krzyzanowski 6

Ring algorithm

• Ring arrangement of processes

• If any process detects failure of coordinator

– Construct election message with process ID and send to next

process

– If successor is down, skip over

– Repeat until a running process is located

• Upon receiving an election message

– Process forwards the message, adding its process ID to the body

31 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Ring algorithm

Eventually message returns to originator

– Process sees its ID on list

– Circulates (or multicasts) a coordinator message announcing

coordinator

• E.g. lowest numbered process

32 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Ring algorithm

P0

P1

P2

P3

P4

P5

Election: {P2}

Assume P2 discovers that the coordinator, P0, is dead

P2 starts an election

DEAD

33 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Ring algorithm

P0

P1

P2

P3

P4

P5

Election: {P2, P3}

DEAD

34 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Ring algorithm

P0

P1

P2

P3

P4

P5

DEAD

Election: {P2, P3, P4}

35 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Ring algorithm

P0

P1

P2

P3

P4

P5

DEAD

Election: {P2, P3, P4, P5}

Fails: P0 is dead

36 September 28, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/28/2016

Paul Krzyzanowski 7

Ring algorithm

P0

P1

P2

P3

P4

P5

DEAD

Election: {P2, P3, P4, P5}

Skip to P1

37 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Ring algorithm

P0

P1

P2

P3

P4

P5

DEAD

Election: {P2, P3, P4, P5, P1}

38 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Ring algorithm

P0

P1

P2

P3

P4

P5

P2 receives the election message that it initiated

P2 now picks a leader (e.g., lowest or highest ID)

DEAD

Election: {P2, P3, P4, P5, P1}

Winner! This is me!

39

Because P2 sees its ID

at the head of the list, it

know that this is the
election that it started

We might have

multiple concurrent

elections. Everyone
needs to pick the

same leader. Here, we

agree to pick the

lowest ID in the list.

September 28, 2016 © 2014-2016 Paul Krzyzanowski

Ring algorithm

P0

P1

P2

P3

P4

P5

P2 announces the new coordinator to the group

DEAD

P1

P1

P1

P1

40 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Chang & Roberts Ring Algorithm

• Optimize the ring

– Message always contains one process ID

– Avoid multiple circulating elections

– If a process sends a message, it marks its state as a participant

• Upon receiving an election message:
 If PID(message) > PID(process)

 forward the message

 If PID(message) < PID(process)

 replace PID in message with PID(process)

 forward the new message

 If PID(message) < PID(process) AND process is participant

 discard the message

 If PID(message) == PID(process)

 the process is now the leader

41 September 28, 2016 © 2014-2016 Paul Krzyzanowski

Network Partitioning: Split Brain

• Network partitioning (segmentation)

– Split brain

– Multiple nodes may decide they’re the leader

• Dealing with partitioning

– Insist on a majority → if no majority, the system will not function

– Rely on alternate communication mechanism to validate failure

• Redundant network, shared disk, serial line, SCSI

• We will visit this problem later!

 42

Router Router Router

Leader! Leader! Leader!

September 28, 2016 © 2014-2016 Paul Krzyzanowski

CS 417 9/28/2016

Paul Krzyzanowski 8

The End

September 28, 2016 43 © 2014-2016 Paul Krzyzanowski

