
Distributed Systems
14. Network File Systems

Paul Krzyzanowski

Rutgers University

Fall 2016

1 October 31, 2016 © 2014-2016 Paul Krzyzanowski

Accessing files

File sharing with socket-based programs

HTTP, FTP, telnet:

– Explicit access

– User-directed connection to access remote resources

We want more transparency

– Allow user to access remote resources just as local ones

NAS: Network Attached Storage

October 31, 2016 © 2014-2016 Paul Krzyzanowski 2

File service models

Upload/Download model

– Read file: copy file from server to client

– Write file: copy file from client to server

Advantage:

– Simple

Problems:

– Wasteful: what if client needs small

piece?

– Problematic: what if client doesn’t have

enough space?

– Consistency: what if others need to

modify the same file?

Remote access model

File service provides functional interface:

– create, delete, read bytes, write bytes, etc…

Advantages:

– Client gets only what’s needed

– Server can manage coherent view of file

system

Problem:

– Possible server and network congestion

• Servers are accessed for duration of file

access

• Same data may be requested repeatedly

October 31, 2016 © 2014-2016 Paul Krzyzanowski 3

Semantics of file sharing

Sequential Semantics

Read returns result of last write

Easily achieved if

– Only one server

– Clients do not cache data

BUT

– Performance problems if no cache

• Obsolete data

– We can write-through

• Must notify clients holding copies

• Requires extra state, generates

extra traffic

Session Semantics

Relax the rules

• Changes to an open file are

initially visible only to the process

(or machine) that modified it.

• Need to hide or lock file under

modification from other clients

• Last process to modify the file

wins.

October 31, 2016 © 2014-2016 Paul Krzyzanowski 4

Remote File Service

File Directory Service

– Maps textual names for file to internal locations that can be used by

file service

File service

– Provides file access interface to clients

Client module (driver)

– Client side interface for file and directory service

– if done right, helps provide access transparency

 e.g. implement the file system under the VFS layer

October 31, 2016 © 2014-2016 Paul Krzyzanowski 5

System design issues

October 31, 2016 © 2014-2016 Paul Krzyzanowski 6

System Design Issues

• Transparency

– Integrated into OS or access via APIs?

• Consistency

– What happens if more than one user accesses the same file?

– What if files are replicated across servers?

• Security

• Reliability

– What happens when the server or client dies?

• State

– Should the server keep track of clients between requests?

7

Accessing Remote Files

For maximum transparency, implement the client module as a file

system type under VFS

System call interface

VFS

ext4 NTFS procfs
Remote

FS

Sockets

Network protocols

Net devices

network

Kernel-level sockets interface
sosend, soreceive in BSD & Linux

October 31, 2016 © 2014-2016 Paul Krzyzanowski 8

Stateful or Stateless design?

Stateful

Server maintains client-specific state

• Shorter requests

• Better performance in processing

requests

• Cache coherence is possible

– Server can know who’s accessing what

• File locking is possible

Stateless

Server maintains no information on
client accesses

• Each request must identify file and
offsets

• Server can crash and recover

– No state to lose

• Client can crash and recover

• No open/close needed

– They only establish state

• No server space used for state

– Don’t worry about supporting many
clients

• Problems if file is deleted on server

• File locking not possible

October 31, 2016 © 2014-2016 Paul Krzyzanowski 9

Caching

Hide latency to improve performance for repeated

accesses

Four places

– Server’s disk

– Server’s buffer cache

– Client’s buffer cache

– Client’s disk

WARNING:
risk of cache

consistency problems

October 31, 2016 © 2014-2016 Paul Krzyzanowski 10

Approaches to caching

• Write-through
– What if another client reads its own (out-of-date) cached copy?

– All accesses will require checking with server

– Or … server maintains state and sends invalidations

• Delayed writes (write-behind)
– Data can be buffered locally

(watch out for consistency – others won’t see updates!)

– Remote files updated periodically

– One bulk wire is more efficient than lots of little writes

– Problem: semantics become ambiguous

October 31, 2016 © 2014-2016 Paul Krzyzanowski 11

Approaches to caching

• Read-ahead (prefetch)

– Request chunks of data before it is needed.

– Minimize wait when it actually is needed.

• Write on close

– Admit that we have session semantics.

• Centralized control

– Keep track of who has what open and cached on each node.

– Stateful file system with signaling traffic.

October 31, 2016 © 2014-2016 Paul Krzyzanowski 12

NFS
Network File System
Sun Microsystems

October 31, 2016 © 2014-2016 Paul Krzyzanowski 13

NFS Design Goals

• Any machine can be a client or server

• Must support diskless workstations

– Device files refer back to local drivers

• Heterogeneous systems

– Not 100% for all UNIX system call options

• Access transparency: normal file system calls

• Recovery from failure:

– Stateless, UDP, client retries

– Stateless → no locking!

• High Performance

– use caching and read-ahead

October 31, 2016 © 2014-2016 Paul Krzyzanowski 14

NFS Design Goals

Transport Protocol

Initially NFS ran over UDP using Sun RPC

Why was UDP chosen?

- Slightly faster than TCP

- No connection to maintain (or lose)

- NFS is designed for Ethernet LAN environment – relatively reliable

- UDP has error detection (drops bad packets) but no retransmission

 NFS retries lost RPC requests

October 31, 2016 © 2014-2016 Paul Krzyzanowski 15

Client Server

VFS on client; Server accesses local file system

16

System call interface

VFS

ext4 procfs
NFS

Client

System call

interface

VFS

ext4 procfs

NFS

Server

NFS Protocols

Mounting protocol

Request access to exported directory tree

Directory & File access protocol

Access files and directories

(read, write, mkdir, readdir, …)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 17

Mounting Protocol

static mounting

– mount request contacts server

Server: edit /etc/exports

Client: mount fluffy:/users/paul /home/paul

October 31, 2016 © 2014-2016 Paul Krzyzanowski 18

Mounting Protocol

• Send pathname to server

• Request permission to access contents

• Server returns file handle

– File device #, inode #, instance #

client: parses pathname

 contacts server for file handle

client: create in-memory VFS inode at mount point.

 internally points to rnode for remote files

 - Client keeps state, not the server

19

Directory and file access protocol

• First, perform a lookup RPC

– returns file handle and attributes

• lookup is not like open

– No information is stored on server

• handle passed as a parameter for other file access

functions

– e.g. read(handle, offset, count)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 20

Directory and file access protocol

NFS has 16 functions
– (version 2; six more added in version 3)

null

lookup

create

remove

rename

link

symlink

readlink

read

write

mkdir

rmdir

readdir

getattr

setattr

statfs

October 31, 2016 © 2014-2016 Paul Krzyzanowski 21

NFS Performance

• Usually slower than local

• Improve by caching at client
– Goal: reduce number of remote operations

– Cache results of
 read, readlink, getattr, lookup, readdir

– Cache file data at client (buffer cache)

– Cache file attribute information at client

– Cache pathname bindings for faster lookups

• Server side
– Caching is “automatic” via buffer cache

– All NFS writes are write-through to disk to avoid unexpected data
loss if server dies

October 31, 2016 © 2014-2016 Paul Krzyzanowski 22

Inconsistencies may arise

Try to resolve by validation

– Save timestamp of file

– When file opened or server contacted for new block

• Compare last modification time

• If remote is more recent, invalidate cached data

• Always invalidate data after some time

– After 3 seconds for open files (data blocks)

– After 30 seconds for directories

• If data block is modified, it is:

– Marked dirty

– Scheduled to be written

– Flushed on file close

October 31, 2016 © 2014-2016 Paul Krzyzanowski 23

Improving read performance

• Transfer data in large chunks

– 8K bytes default (that used to be a large chunk!)

• Read-ahead

– Optimize for sequential file access

– Send requests to read disk blocks before they are requested by the

application

October 31, 2016 © 2014-2016 Paul Krzyzanowski 24

Problems with NFS

• File consistency

• Assumes clocks are synchronized

• Open with append cannot be guaranteed to work

• Locking cannot work

– Separate lock manager added (but this adds stateful behavior)

• No reference counting of open files

– You can delete a file you (or others) have open!

• Global UID space assumed

October 31, 2016 © 2014-2016 Paul Krzyzanowski 25

Problems with NFS

• File permissions may change

– Invalidating access to file

• No encryption

– Requests via unencrypted RPC

– Authentication methods available

• Diffie-Hellman, Kerberos, Unix-style

– Rely on user-level software to encrypt

October 31, 2016 © 2014-2016 Paul Krzyzanowski 26

Improving NFS: version 2

• User-level lock manager

– Monitored locks: introduces state at server

(but runs as a separate user-level process)

• status monitor: monitors clients with locks

• Informs lock manager if host inaccessible

• If server crashes: status monitor reinstates locks on recovery

• If client crashes: all locks from client are freed

• NV RAM support
– Improves write performance

– Normally NFS must write to disk on server before responding to
client write requests

– Relax this rule through the use of non-volatile RAM

October 31, 2016 © 2014-2016 Paul Krzyzanowski 27

Improving NFS: version 2

• Adjust RPC retries dynamically

– Reduce network congestion from excess RPC retransmissions

under load

– Based on performance

• Client-side disk caching

– cacheFS

– Extend buffer cache to disk for NFS

• Cache in memory first

• Cache on disk in 64KB chunks

October 31, 2016 © 2014-2016 Paul Krzyzanowski 28

Support Larger Environments: Automounter

Problem with mounts

– If a client has many remote resources mounted, boot-time can be

excessive

– Each machine has to maintain its own name space

• Painful to administer on a large scale

Automounter

– Allows administrators to create a global name space

– Support on-demand mounting

October 31, 2016 © 2014-2016 Paul Krzyzanowski 29

Automounter

• Alternative to static mounting

• Mount and unmount in response to client demand

– Set of directories are associated with a local directory

– None are mounted initially

– When local directory is referenced

• OS sends a message to each server

• First reply wins

– Attempt to unmount every 5 minutes

• Automounter maps

– Describes how file systems below a mount point are mounted

October 31, 2016 © 2014-2016 Paul Krzyzanowski 30

Automounter maps

Example:
 automount /usr/src srcmap

srcmap contains:

cmd -ro doc:/usr/src/cmd

kernel -ro frodo:/release/src \

 bilbo:/library/source/kernel

lib -rw sneezy:/usr/local/lib

Access /usr/src/cmd: request goes to doc

Access /usr/src/kernel:

 ping frodo and bilbo, mount first response

October 31, 2016 © 2014-2016 Paul Krzyzanowski 31

Kernel

VFS

NFS

client

The automounter

automounter

NFS request

NFS mount

NFS request

32

NFS

Server

application

More improvements… NFS v3

• Updated version of NFS protocol

• Support 64-bit file sizes

• TCP support and large-block transfers

– UDP caused more problems on WANs (errors)

– All traffic can be multiplexed on one connection

• Minimizes connection setup

– No fixed limit on amount of data that can be transferred between

client and server

• Negotiate for optimal transfer size

• Server checks access for entire path from client

October 31, 2016 © 2014-2016 Paul Krzyzanowski 33

More improvements… NFS v3

• New commit operation

– Check with server after a write operation to see if data is committed

– If commit fails, client must resend data

– Reduce number of write requests to server

– Speeds up write requests

• Don’t require server to write to disk immediately

• Return file attributes with each request

– Saves extra RPCs to get attributes for validation

October 31, 2016 © 2014-2016 Paul Krzyzanowski 34

AFS
Andrew File System
Carnegie Mellon University

 c. 1986(v2), 1989(v3)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 35

AFS

• Design Goal

– Support information sharing on a large scale

e.g., 10,000+ clients

• History

– Developed at CMU

– Became a commercial spin-off: Transarc

– IBM acquired Transarc

– Open source under IBM Public License

– OpenAFS (openafs.org)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 36

AFS Assumptions

• Most files are small

• Reads are more common than writes

• Most files are accessed by one user at a time

• Files are referenced in bursts (locality)

– Once referenced, a file is likely to be referenced again

October 31, 2016 © 2014-2016 Paul Krzyzanowski 37

AFS Design Decisions

Whole file serving

– Send the entire file on open

Whole file caching

– Client caches entire file on local disk

– Client writes the file back to server on close

• if modified

• Keeps cached copy for future accesses

October 31, 2016 © 2014-2016 Paul Krzyzanowski 38

AFS Design

• Each client has an AFS disk cache

– Part of disk devoted to AFS (e.g. 100 MB)

– Client manages cache in LRU manner

• Clients communicate with set of trusted servers

• Each server presents one identical name space to clients

– All clients access it in the same way

– Location transparent

October 31, 2016 © 2014-2016 Paul Krzyzanowski 39

AFS Server: cells

• Servers are grouped into administrative entities called cells

• Cell: collection of

– Servers

– Administrators

– Users

– Clients

• Each cell is autonomous but cells may cooperate and

present users with one uniform name space

October 31, 2016 © 2014-2016 Paul Krzyzanowski 40

AFS Server: volumes

Disk partition contains

 file and directories

Volume
– Administrative unit of organization

• E.g., user’s home directory, local source, etc.

– Each volume is a directory tree (one root)

– Assigned a name and ID number

– A server will often have 100s of volumes

Grouped into volumes

October 31, 2016 © 2014-2016 Paul Krzyzanowski 41

Namespace management

Clients get information via cell directory server (Volume

Location Server) that hosts the Volume Location Database

(VLDB)

Goal:

 everyone sees the same namespace

 /afs/cellname/path

 /afs/mit.edu/home/paul/src/try.c

October 31, 2016 © 2014-2016 Paul Krzyzanowski 42

Communication with the server

• Communication is via RPC over UDP

• Access control lists used for protection

– Directory granularity

– UNIX permissions ignored (except execute)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 43

AFS cache coherence

On open:

– Server sends entire file to client

 and provides a callback promise:

– It will notify the client when any other process modifies the file

If a client modified a file:

– Contents are written to server on close

When a server gets an update:

– it notifies all clients that have been issued the callback promise

– Clients invalidate cached files

October 31, 2016 © 2014-2016 Paul Krzyzanowski 44

AFS cache coherence

If a client was down

– On startup, contact server with timestamps of all cached files to

decide whether to invalidate

If a process has a file open

– It continues accessing it even if it has been invalidate

– Upon close, contents will be propagated to server

AFS: Session Semantics
(vs. sequential semantics)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 45

AFS replication and caching

• Read-only volumes may be replicated on multiple servers

• Whole file caching not feasible for huge files

– AFS caches in 64KB chunks (by default)

– Entire directories are cached

• Advisory locking supported

– Query server to see if there is a lock

• Referrals

– An administrator may move a volume to another server

– If a client accesses the old server, it gets a referral to the new one

October 31, 2016 © 2014-2016 Paul Krzyzanowski 46

AFS key concepts

• Single global namespace

– Built from a collection of volumes

– Referrals for moved volumes

– Replication of read-only volumes

• Whole-file caching

– Offers dramatically reduced load on servers

• Callback promise

– Keeps clients from having to poll the server to invalidate cache

October 31, 2016 © 2014-2016 Paul Krzyzanowski 47

AFS summary

AFS benefits

– AFS scales well

– Uniform name space

– Read-only replication

– Security model supports mutual authentication, data encryption

AFS drawbacks

– Session semantics

– Directory based permissions

– Uniform name space

October 31, 2016 © 2014-2016 Paul Krzyzanowski 48

CODA
COnstant Data Availability
Carnegie-Mellon University

c. 1990-1992

October 31, 2016 © 2014-2016 Paul Krzyzanowski 49

CODA Goals

Descendant of AFS

 CMU, 1990-1992

Goals

1. Provide better support for replication than AFS

 – support shared read/write files

2. Support mobility of PCs

October 31, 2016 © 2014-2016 Paul Krzyzanowski 50

Mobility

• Goal: Improve fault tolerance

• Provide constant data availability in disconnected

environments

• Via hoarding (user-directed caching)

– Log updates on client

– Reintegrate on connection to network (server)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 51

Modifications to AFS

• Support replicated file volumes

• Extend mechanism to support disconnected operation

• A volume can be replicated on a group of servers

– Volume Storage Group (VSG)

• Replicated volumes

– Volume ID used to identify files is a Replicated Volume ID

– One-time lookup

• Replicated volume ID  list of servers and local volume IDs

• Cache results for efficiency

– Read files from any server

– Write to all available servers

October 31, 2016 © 2014-2016 Paul Krzyzanowski 52

Disconnected volume servers

AVSG: Accessible Volume Storage Group

– Subset of VSG

What if some volume servers are down?

 On first download, contact everyone you can and get a

version timestamp of the file

October 31, 2016 © 2014-2016 Paul Krzyzanowski 53

Reconnecting disconnected servers

If the client detects that some servers have old versions

– Some server resumed operation

– Client initiates a resolution process

• Updates servers: notifies server of stale data

• Resolution handled entirely by servers

• Administrative intervention may be required

(if conflicts)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 54

AVSG = Ø

• If no servers are accessible

– Client goes to disconnected operation mode

• If file is not in cache

– Nothing can be done… fail

• Do not report failure of update to server

– Log update locally in Client Modification Log (CML)

– User does not notice

October 31, 2016 © 2014-2016 Paul Krzyzanowski 55

Reintegration

Upon reconnection

– Commence reintegration

Bring server up to date with CML log playback

– Optimized to send latest changes

Try to resolve conflicts automatically

– Not always possible

October 31, 2016 © 2014-2016 Paul Krzyzanowski 56

Support for disconnection

Keep important files up to date

– Ask server to send updates if necessary

Hoard database

– Automatically constructed by monitoring the user’s activity

– And user-directed prefetch

October 31, 2016 © 2014-2016 Paul Krzyzanowski 57

CODA summary

• Session semantics as with AFS

• Replication of read/write volumes

– Clients do the work of writing replicas (extra bandwidth)

– Client-detected reintegration

• Disconnected operation

– Client modification log

– Hoard database for needed files

• User-directed prefetch

– Log replay on reintegration

October 31, 2016 © 2014-2016 Paul Krzyzanowski 58

DFS (AFS v3)

Distributed File System

October 31, 2016 © 2014-2016 Paul Krzyzanowski 59

DFS

• Goal

– AFS: scalable performance but session semantics were hard to live with

– Create a file system similar to AFS but with a strong consistency model

• History

– Part of Open Group’s Distributed Computing Environment

– Descendant of AFS - AFS version 3.x

• Assume (like AFS):

– Most file accesses are sequential

– Most file lifetimes are short

– Majority of accesses are whole file transfers

– Most accesses are to small files

October 31, 2016 © 2014-2016 Paul Krzyzanowski 60

Caching and Server Communication

• Increase effective performance with

– Caching data that you read

• Safe if multiple clients reading, nobody writing

– read-ahead

• Safe if multiple clients reading, nobody writing

– write-behind (delaying writes to the server)

• Safe if only one client is accessing file

• Goal:

– Minimize times client informs server of changes, use fewer

messages with more data vs. lots of messages with little data

October 31, 2016 61 © 2014-2016 Paul Krzyzanowski

DFS Tokens

Cache consistency

maintained by tokens

Token

–Guarantee from server that a

client can perform certain

operations on a cached file

–Server grants & revokes tokens

• Open tokens
– Allow token holder to open a file

– Token specifies access
(read, write, execute, exclusive-write)

• Data tokens
– Applies to a byte range

– read token - can use cached data

– write token - write access, cached
writes

• Status tokens
– read: can cache file attributes

– write: can cache modified attributes

• Lock tokens
– Holder can lock a byte range of a file

October 31, 2016 62 © 2014-2016 Paul Krzyzanowski

Living with tokens

• Server grants and revokes tokens

– Multiple read tokens OK

– Multiple read and a write token or multiple write tokens not OK if

byte ranges overlap

• Revoke all other read and write tokens

• Block new request and send revocation to other token holders

October 31, 2016 © 2014-2016 Paul Krzyzanowski 63

DFS key points

• Caching

– Token granting mechanism

• Allows for long term caching and strong consistency

– Caching sizes: 8K – 256K bytes

– Read-ahead (like NFS)

• Don’t have to wait for entire file before using it as with AFS

• File protection via access control lists (ACLs)

• Communication via authenticated RPCs

• Essentially AFS v2 with server-based token granting

– Server keeps track of who is reading and who is writing files

– Server must be contacted on each open and close operation to

request token

October 31, 2016 © 2014-2016 Paul Krzyzanowski 64

SMB
Server Message Blocks
Microsoft

c. 1987

October 31, 2016 © 2014-2016 Paul Krzyzanowski 65

SMB Goals

• File sharing protocol for Windows 9x/NT/20xx/ME/XP/Vista/Windows

7/Windows 8/Windows 10 …

• Protocol for sharing:

Files, devices, communication abstractions (named pipes), mailboxes

• Servers: make file system and other resources available to clients

• Clients: access shared file systems, printers, etc. from servers

Design Priority:

locking and consistency over client caching

October 31, 2016 © 2014-2016 Paul Krzyzanowski 66

SMB Design

• Request-response protocol
– Send and receive message blocks

• name from old DOS system call structure

– Send request to server (machine with resource)

– Server sends response

• Connection-oriented protocol
– Persistent connection – “session”

• Each message contains:
– Fixed-size header

– Command string (based on message) or reply string

October 31, 2016 © 2014-2016 Paul Krzyzanowski 67

Message Block

• Header: [fixed size]

– Protocol ID

– Command code (0..FF)

– Error class, error code

– Tree ID – unique ID for resource in use by client (handle)

– Caller process ID

– User ID

– Multiplex ID (to route requests in a process)

• Command: [variable size]

– Param count, params, #bytes data, data

October 31, 2016 © 2014-2016 Paul Krzyzanowski 68

SMB commands

• Files

– Get disk attributes

– create/delete directories

– search for file(s)

– create/delete/rename file

– lock/unlock file area

– open/commit/close file

– get/set file attributes

• Print-related

– Open/close spool file

– write to spool

– Query print queue

• User-related

– Discover home system for user

– Send message to user

– Broadcast to all users

– Receive messages

October 31, 2016 © 2014-2016 Paul Krzyzanowski 69

Protocol Steps

• Establish connection

October 31, 2016 © 2014-2016 Paul Krzyzanowski 70

Protocol Steps

• Establish connection

• Negotiate protocol

– negprot SMB

– Responds with version number of protocol

October 31, 2016 © 2014-2016 Paul Krzyzanowski 71

Protocol Steps

• Establish connection

• Negotiate protocol

• Authenticate/set session parameters

– Send sesssetupX SMB with username, password

– Receive NACK or UID of logged-on user

– UID must be submitted in future requests

October 31, 2016 © 2014-2016 Paul Krzyzanowski 72

Protocol Steps

• Establish connection

• Negotiate protocol - negprot

• Authenticate - sesssetupX

• Make a connection to a resource (similar to mount)

– Send tcon (tree connect) SMB with name of shared resource

– Server responds with a tree ID (TID) that the client will use in future

requests for the resource

October 31, 2016 © 2014-2016 Paul Krzyzanowski 73

Protocol Steps

• Establish connection

• Negotiate protocol - negprot

• Authenticate - sesssetupX

• Make a connection to a resource – tcon

• Send open/read/write/close/… SMBs

October 31, 2016 © 2014-2016 Paul Krzyzanowski 74

SMB Evolves

Common Internet File System (1996)

SMB 2 (2006)

SMB 3 (2012)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 75

SMB Evolves

• History

– SMB was reverse-engineered for non-Microsoft platforms

• samba.org

– Microsoft released SMB protocol to X/Open in 1992

– Common Internet File System (CIFS)

• SMB as implemented in 1996 for Windows NT 4.0

October 31, 2016 © 2014-2016 Paul Krzyzanowski 76

Caching and Server Communication

• Increase effective performance with

– Caching

• Safe if multiple clients reading, nobody writing

– read-ahead

• Safe if multiple clients reading, nobody writing

– write-behind

• Safe if only one client is accessing file

• Minimize times client informs server of changes

77

Oplocks

Server grants opportunistic locks (oplocks) to client
– Oplock tells client how/if it may cache data

– Similar to DFS tokens (but more limited)

Client must request an oplock
– oplock may be

• Granted

• Revoked by the server at some future time

• Changed by server at some future time

October 31, 2016 © 2014-2016 Paul Krzyzanowski 78

Level 1 oplock (exclusive access)

– Client can open file for exclusive access

– Arbitrary caching

– Cache lock information

– Read-ahead

– Write-behind

If another client opens the file, the server has former client

break its oplock:

– Client must send server any lock and write data and acknowledge

that it does not have the lock

– Purge any read-aheads

October 31, 2016 © 2014-2016 Paul Krzyzanowski 79

Level 2 oplock (multiple readers)

• Level 1 oplock is replaced with a Level 2 lock if another

process tries to read the file

• Multiple clients may have the same file open as long as

none are writing

• Cache reads, file attributes

– Send other requests to server

• Level 2 oplock revoked if any client opens the file for writing

80

Batch oplock (remote open even if local closed)

• Client can keep file open on server even if a local process

that was using it has closed the file

– Exclusive R/W open lock + data lock + metadata lock

• Client requests batch oplock if it expects programs may

behave in a way that generates a lot of traffic (e.g.

accessing the same files over and over)

– Designed for Windows batch files

• Batch oplock is exclusive: one client only

– revoked if another client opens the file

October 31, 2016 © 2014-2016 Paul Krzyzanowski 81

Filter oplock (allow preemption)

• Open file for read or write

• Allow clients with filter oplock to be suspended while

another process preempted file access.

– E.g., indexing service can run and open files without causing

programs to get an error when they need to open the file

• Indexing service is notified that another process wants to access the file.

• It can abort its work on the file and close it or finish its indexing and then

close the file.

October 31, 2016 © 2014-2016 Paul Krzyzanowski 82

Leases (SMB ≥ 2.1; Windows ≥ 7)

• Same purpose as oplock: control caching

• Lease types

– Read-cache (R) lease: cache results of read; can be shared

– Write-cache (W) lease: cache results of writes; exclusive

– Handle-cache (H) lease: cache file handles; can be shared

• Optimizes re-opening files

• Leases can be combined: R, RW, RH, RWH

• Leases define oplocks:

– Read oplock (R) – essentially same as Level 2

– Read-handle (RH) – essentially same as Batch

– Read-write (RW)– essentially the same as Level 1

– Read-write-handle (RWH)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 83

See https://blogs.msdn.microsoft.com/openspecification/2009/05/22/client-caching-features-oplock-vs-lease/

No oplock

• All requests must be sent to the server

• Can work from cache only if byte range was locked by

client

October 31, 2016 © 2014-2016 Paul Krzyzanowski 84

Microsoft Dfs

• “Distributed File System”

– Provides a logical view of files & directories

– Organize multiple SMB shares into one file system

– Provide location transparency & redundancy

• Each computer hosts volumes

 \\servername\dfsname

Each Dfs tree has one root volume and one level of leaf volumes.

• A volume can consist of multiple shares

– Alternate path: load balancing (read-only)

– Similar to Sun’s automounter

• Dfs = SMB + naming/ability to mount server shares on other server shares

 85 October 31, 2016 © 2014-2016 Paul Krzyzanowski

Redirection via referrals

• A share can be replicated (read-only) or moved through

Microsoft’s Dfs

• Client opens old location:

– Receives STATUS_DFS_PATH_NOT_COVERED

– Client requests referral:

 TRANS2_DFS_GET_REFERRAL

– Server replies with new server

October 31, 2016 © 2014-2016 Paul Krzyzanowski 86

SMB (CIFS) Summary

• Stateful model with strong consistency

• Oplocks offer flexible control for distributed consistency

– Oplocks mechanism supported in base OS: Windows

NT/XP/Vista/7/8/9/10, 20xx

• Dfs offers namespace management

October 31, 2016 © 2014-2016 Paul Krzyzanowski 87

SMB2 and SMB3

• SMB was…

– Chatty: common tasks often required multiple round trip messages

– Not designed for WANs

• SMB 2

– Protocol dramatically cleaned up

– New capabilities added

– SMB2 is the default network file system in Apple Mavericks (10.9)

• SMB3

– Added RDMA and multichannel support; end-to-end encryption

• RDMA = Remote DMA (Direct Memory Access)

– Windows 8 / Windows Server 2012: SMB 3.0

– SMB3 was default on Apple Yosemite (10.10)

October 31, 2016 © 2014-2016 Paul Krzyzanowski 88

SMB2 Additions

• Reduced complexity

– From >100 commands to 19

• Pipelining support

– Send additional commands before the response to a previous one

is received

– Credit-based flow control

• Goal: keep more data in flight and use available network bandwidth

• Server starts with a small # of “credits” and scales up as needed

• Server sends credits to client

• Client needs credits to send a message and decrements credit balance

• Allows server to control buffer overflow

• Note: TCP uses congestion control, which yields to data loss and wild

oscillations in traffic intensity

October 31, 2016 © 2014-2016 Paul Krzyzanowski 89

SMB2 Additions

• Compounding support

– Avoid the need to have commands that combine operations

– Send an arbitrary set of commands in one request

– E.g., instead of RENAME:

• CREATE (create new file or open existing)

• SET_INFO

• CLOSE

• Larger reads/writes

• Caching of folder & file properties

• “Durable handles”

– Allow reconnection to server if there was a temporary loss of

connectivity

October 31, 2016 © 2014-2016 Paul Krzyzanowski 90

Benefits

• Transfer 10.7 GB over 1 Gbps WAN link with 76 ms RTT

– SMB: 5 hours 40 minutes: rate = 0.56 MB/s

– SMB2: 7 minutes, 45 seconds: rate = 25 MB/s

October 31, 2016 © 2014-2016 Paul Krzyzanowski 91

SMB3

• Key features

– Multichannel support for network scaling

– Transparent network failover

– “SMBDirect” – support for Remote DMA in clustered environments

• Enables direct, low-latency copying of data blocks from remote memory
without CPU intervention

– Direct support for virtual machine files

• Volume Shadow Copy

• Enables volume backups to be performed while apps continue to write to

files.

– End-to-end encryption

October 31, 2016 © 2014-2016 Paul Krzyzanowski 92

NFS version 4

Network File System

Sun Microsystems

October 31, 2016 © 2014-2016 Paul Krzyzanowski 93

NFS version 4 enhancements

• Stateful server

• Compound RPC

– Group operations together

– Receive set of responses

– Reduce round-trip latency

• Stateful open/close operations

– Ensures atomicity of share reservations for windows file sharing

(CIFS)

– Supports exclusive creates

– Client can cache aggressively

October 31, 2016 © 2014-2016 Paul Krzyzanowski 94

NFS version 4 enhancements

• create, link, open, remove, rename

– Inform client if the directory changed during the operation

• Strong security

– Extensible authentication architecture

• File system replication and migration

– Mirror servers can be configured

– Administrator can distribute data across multiple servers

– Clients don’t need to know where the data is: server will send

referrals

• No concurrent write sharing or distributed cache coherence

October 31, 2016 © 2014-2016 Paul Krzyzanowski 95

NFS version 4 enhancements

• Stateful locking

– Clients inform servers of lock requests

– Locking is lease-based; clients must renew leases

• Improved caching

– Server can delegate specific actions on a file to enable more

aggressive client caching

– Close-to-open consistency

• File changes propagated to server when file is closed

• Client checks timestamp on open to avoid accessing stale cached copy

– Similar to CIFS oplocks

• Clients must disable caching to share files

• Callbacks

– Notify client when file/directory contents change

October 31, 2016 © 2014-2016 Paul Krzyzanowski 96

Review: Core Concepts

• NFS

– RPC-based access

• AFS

– Long-term caching

• DFS

– AFS + tokens for consistency and efficient caching

• CODA

– Read/write replication & disconnected operation

• SMB/CIFS

– RPC-like access with strong consistency

– Oplocks (tokens) to support caching

– Dfs: add-on to provide a consistent view of volumes (AFS-style)

97

The End

October 31, 2016 103 © 2014-2016 Paul Krzyzanowski

