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Accessing files 

File sharing with socket-based programs 

HTTP, FTP, telnet: 

– Explicit access 

– User-directed connection to access remote resources 

 

We want more transparency 

– Allow user to access remote resources just as local ones 

 

NAS: Network Attached Storage 
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File service models 

Upload/Download model 

– Read file: copy file from server to client 

– Write file: copy file from client to server 

 

Advantage: 

– Simple 

Problems: 

– Wasteful: what if client needs small 

piece? 

– Problematic: what if client doesn’t have 

enough space? 

– Consistency: what if others need to 

modify the same file? 

Remote access model 

File service provides functional interface: 

– create, delete, read bytes, write bytes, etc… 

 

 

Advantages: 

– Client gets only what’s needed 

– Server can manage coherent view of file 

system 

Problem: 

– Possible server and network congestion 

• Servers are accessed for duration of file 

access 

• Same data may be requested repeatedly 
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Semantics of file sharing 

Sequential Semantics 

Read returns result of last write 

Easily achieved if 

– Only one server 

– Clients do not cache data 

BUT 

– Performance problems if no cache 

• Obsolete data 

– We can write-through 

• Must notify clients holding copies 

• Requires extra state, generates 

extra traffic 

Session Semantics 

Relax the rules 

• Changes to an open file are 

initially visible only to the process 

(or machine) that modified it. 

• Need to hide or lock file under 

modification from other clients 

• Last process  to modify the file 

wins.  
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Remote File Service 

File Directory Service 

– Maps textual names for file to internal locations that can be used by 

file service 

File service 

– Provides file access interface to clients 

Client module (driver) 

– Client side interface for file and directory service 

– if done right, helps provide access transparency 

 e.g. implement the file system under the VFS layer 
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System design issues 
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System Design Issues 

• Transparency 

– Integrated into OS or access via APIs? 

• Consistency 

– What happens if more than one user accesses the same file? 

– What if files are replicated across servers? 

• Security 

• Reliability 

– What happens when the server or client dies? 

• State 

– Should the server keep track of clients between requests? 
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Accessing Remote Files 

For maximum transparency, implement the client module as a file 

system type under VFS 

System call interface 

VFS 

ext4 NTFS procfs 
Remote 

FS 

Sockets 

Network protocols 

Net devices 

network 

Kernel-level sockets interface 
sosend, soreceive in BSD & Linux 
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Stateful or Stateless design? 

Stateful 

Server maintains client-specific state 

• Shorter requests 

• Better performance in processing 

requests 

• Cache coherence is possible 

– Server can know who’s accessing what 

• File locking is possible 

Stateless 

Server maintains no information on 
client accesses 

• Each request must identify file and 
offsets 

• Server can crash and recover 

– No state to lose 

• Client can crash and recover 

• No open/close needed 

– They only establish state 

• No server space used for state 

– Don’t worry about supporting many 
clients 

• Problems if file is deleted on server 

• File locking not possible 
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Caching 

Hide latency to improve performance for repeated 

accesses 

 

Four places 

– Server’s disk 

– Server’s buffer cache  

– Client’s buffer cache 

– Client’s disk 

WARNING: 
risk of cache 

consistency problems 
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Approaches to caching 

• Write-through 
– What if another client reads its own (out-of-date) cached copy? 

– All accesses will require checking with server 

– Or … server maintains state and sends invalidations 

 

• Delayed writes (write-behind) 
– Data can be buffered locally 

(watch out for consistency – others won’t see updates!) 

– Remote files updated periodically 

– One bulk wire is more efficient than lots of little writes 

– Problem: semantics become ambiguous 
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Approaches to caching 

• Read-ahead (prefetch) 

– Request chunks of data before it is needed. 

– Minimize wait when it actually is needed. 

 

• Write on close 

– Admit that we have session semantics. 

 

• Centralized control 

– Keep track of who has what open and cached on each node. 

– Stateful file system with signaling traffic. 
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NFS 
Network File System 
Sun Microsystems 
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NFS Design Goals 

• Any machine can be a client or server 

• Must support diskless workstations 

– Device files refer back to local drivers 

• Heterogeneous systems 

– Not 100% for all UNIX system call options 

• Access transparency: normal file system calls 

• Recovery from failure: 

– Stateless, UDP, client retries 

– Stateless → no locking! 

• High Performance 

– use caching and read-ahead 
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NFS Design Goals 

Transport Protocol 

Initially NFS ran over UDP using Sun RPC 

 

Why was UDP chosen? 

- Slightly faster than TCP 

- No connection to maintain (or lose) 

- NFS is designed for Ethernet LAN environment – relatively reliable 

- UDP has error detection (drops bad packets) but no retransmission 

 NFS retries lost RPC requests 
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Client Server 

VFS on client; Server accesses local file system 
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System call interface 

VFS 

ext4 procfs 
NFS 

Client 

System call 

interface 

VFS 

ext4 procfs 

NFS 

Server 



NFS Protocols 

Mounting protocol 

Request access to exported directory tree 

 

Directory & File access protocol 

Access files and directories 

(read, write, mkdir, readdir, …) 
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Mounting Protocol 

static mounting 

– mount request contacts server 

 

 

Server: edit /etc/exports 

 
Client: mount fluffy:/users/paul /home/paul 
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Mounting Protocol 

• Send pathname to server 

• Request permission to access contents 

 

 

• Server returns file handle 

– File device #, inode #, instance # 

 

client: parses pathname 

  contacts server for file handle  

client: create in-memory VFS inode at mount point. 

  internally points to rnode for remote files 

   - Client keeps state, not the server 
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Directory and file access protocol 

• First, perform a lookup RPC 

– returns file handle and attributes 

 

• lookup is not like open 

– No information is stored on server 

 

• handle passed as a parameter for other file access 

functions 

– e.g. read(handle, offset, count) 
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Directory and file access protocol 

NFS has 16 functions 
– (version 2; six more added in version 3) 

 

null 

lookup 

create 

remove 

rename 

link 

symlink 

readlink 

read 

write 

mkdir 

rmdir 

readdir 

getattr 

setattr 

statfs 
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NFS Performance 

• Usually slower than local 

• Improve by caching at client 
– Goal: reduce number of remote operations 

– Cache results of 
 read, readlink, getattr, lookup, readdir 

– Cache file data at client (buffer cache) 

– Cache file attribute information at client 

– Cache pathname bindings for faster lookups 

• Server side 
– Caching is “automatic” via buffer cache 

– All NFS writes are write-through to disk to avoid unexpected data 
loss if server dies 
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Inconsistencies may arise 

Try to resolve by validation 

– Save timestamp of file 

– When file opened or server contacted for new block 

• Compare last modification time 

• If remote is more recent, invalidate cached data 

 

• Always invalidate data after some time 

– After 3 seconds for open files (data blocks) 

– After 30 seconds for directories 

 

• If data block is modified, it is: 

– Marked dirty 

– Scheduled to be written 

– Flushed on file close 
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Improving read performance 

• Transfer data in large chunks 

– 8K bytes default (that used to be a large chunk!) 

 

• Read-ahead 

– Optimize for sequential file access 

– Send requests to read disk blocks before they are requested by the 

application 
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Problems with NFS 

• File consistency 

• Assumes clocks are synchronized 

• Open with append cannot be guaranteed to work 

• Locking cannot work 

– Separate lock manager added (but this adds stateful behavior) 

• No reference counting of open files 

– You can delete a file you (or others) have open! 

• Global UID space assumed 
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Problems with NFS 

• File permissions may change 

– Invalidating access to file 

 

• No encryption 

– Requests via unencrypted RPC 

– Authentication methods available 

• Diffie-Hellman, Kerberos, Unix-style 

– Rely on user-level software to encrypt 
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Improving NFS: version 2 

• User-level lock manager 

– Monitored locks: introduces state at server 

(but runs as a separate user-level process) 

• status monitor: monitors clients with locks 

• Informs lock manager if host inaccessible 

• If server crashes: status monitor reinstates locks on recovery 

• If client crashes: all locks from client are freed 

• NV RAM support 
– Improves write performance 

– Normally NFS must write to disk on server before responding to 
client write requests 

– Relax this rule through the use of non-volatile RAM 
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Improving NFS: version 2 

• Adjust RPC retries dynamically 

– Reduce network congestion from excess RPC retransmissions 

under load 

– Based on performance 

 

• Client-side disk caching 

– cacheFS 

– Extend buffer cache to disk for NFS 

• Cache in memory first 

• Cache on disk in 64KB chunks 
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Support Larger Environments: Automounter 

Problem with mounts 

– If a client has many remote resources mounted, boot-time can be 

excessive 

– Each machine has to maintain its own name space 

• Painful to administer on a large scale 

 

Automounter 

– Allows administrators to create a global name space 

– Support on-demand mounting 

 

October 31, 2016 © 2014-2016 Paul Krzyzanowski 29 



Automounter 

• Alternative to static mounting 

• Mount and unmount in response to client demand 

– Set of directories are associated with a local directory 

– None are mounted initially 

– When local directory is referenced 

• OS sends a message to each server 

• First reply wins 

– Attempt to unmount every 5 minutes 

 

• Automounter maps 

– Describes how file systems below a mount point are mounted 
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Automounter maps 

Example: 
  automount /usr/src srcmap 

srcmap contains: 

cmd  -ro doc:/usr/src/cmd 

kernel -ro frodo:/release/src \ 

      bilbo:/library/source/kernel 

lib  -rw sneezy:/usr/local/lib 

Access /usr/src/cmd: request goes to doc 

Access /usr/src/kernel: 

 ping frodo and bilbo, mount first response 
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Kernel 

VFS 

NFS 

client 

The automounter 

automounter 

NFS request 

NFS mount 

NFS request 

32 

NFS 

Server 

application 



More improvements… NFS v3 

• Updated version of NFS protocol 

• Support 64-bit file sizes 

• TCP support and large-block transfers 

– UDP caused more problems on WANs (errors) 

– All traffic can be multiplexed on one connection 

• Minimizes connection setup 

– No fixed limit on amount of data that can be transferred between 

client and server 

• Negotiate for optimal transfer size 

• Server checks access for entire path from client 
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More improvements… NFS v3 

• New commit operation 

– Check with server after a write operation to see if data is committed 

– If commit fails, client must resend data 

– Reduce number of write requests to server 

– Speeds up write requests 

• Don’t require server to write to disk immediately 

 

• Return file attributes with each request 

– Saves extra RPCs to get attributes for validation 
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AFS 
Andrew File System 
Carnegie Mellon University 

 
 c. 1986(v2), 1989(v3)  
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AFS 

• Design Goal 

– Support information sharing on a large scale 

e.g., 10,000+ clients 

 

• History 

– Developed at CMU 

– Became a commercial spin-off: Transarc 

– IBM acquired Transarc 

– Open source under IBM Public License 

– OpenAFS (openafs.org) 
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AFS Assumptions 

• Most files are small 

• Reads are more common than writes 

• Most files are accessed by one user at a time 

• Files are referenced in bursts (locality) 

– Once referenced, a file is likely to be referenced again 
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AFS Design Decisions 

Whole file serving 

– Send the entire file on open 

 

Whole file caching 

– Client caches entire file on local disk 

– Client writes the file back to server on close 

• if modified 

• Keeps cached copy for future accesses 
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AFS Design 

• Each client has an AFS disk cache 

– Part of disk devoted to AFS (e.g. 100 MB) 

– Client manages cache in LRU manner 

 

• Clients communicate with set of trusted servers 

 

• Each server presents one identical name space to clients 

– All clients access it in the same way 

– Location transparent 
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AFS Server: cells 

• Servers are grouped into administrative entities called cells 

 

• Cell: collection of 

– Servers 

– Administrators 

– Users 

– Clients 

• Each cell is autonomous but cells may cooperate and 

present users with one uniform name space 
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AFS Server: volumes 

Disk partition contains 

 file and directories 

 

Volume 
– Administrative unit of organization 

• E.g., user’s home directory, local source, etc. 

– Each volume is a directory tree (one root) 

– Assigned a name and ID number 

– A server will often have 100s of volumes 

 

Grouped into volumes 
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Namespace management 

Clients get information via cell directory server (Volume 

Location Server) that hosts the Volume Location Database 

(VLDB) 

 

Goal: 

 everyone sees the same namespace 

 

   /afs/cellname/path 

 

  /afs/mit.edu/home/paul/src/try.c 
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Communication with the server 

• Communication is via RPC over UDP 

 

• Access control lists used for protection 

– Directory granularity 

– UNIX permissions ignored (except execute) 
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AFS cache coherence 

On open: 

– Server sends entire file to client 

  and provides a callback promise: 

– It will notify the client when any other process modifies the file 

 

If a client modified a file: 

– Contents are written to server on close 

 

When a server gets an update: 

– it notifies all clients that have been issued the callback promise 

– Clients invalidate cached files 
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AFS cache coherence 

If a client was down 

– On startup, contact server with timestamps of all cached files to 

decide whether to invalidate 

 

If a process has a file open 

– It continues accessing it even if it has been invalidate 

– Upon close, contents will be propagated to server 

AFS: Session Semantics 
(vs. sequential semantics) 
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AFS replication and caching 

• Read-only volumes may be replicated on multiple servers 

 

• Whole file caching not feasible for huge files 

– AFS caches in 64KB chunks (by default) 

– Entire directories are cached 

 

• Advisory locking supported 

– Query server to see if there is a lock 

 

• Referrals 

– An administrator may move a volume to another server 

– If a client accesses the old server, it gets a referral to the new one 
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AFS key concepts 

• Single global namespace 

– Built from a collection of volumes 

– Referrals for moved volumes 

– Replication of read-only volumes 

• Whole-file caching 

– Offers dramatically reduced load on servers 

• Callback promise 

– Keeps clients from having to poll the server to invalidate cache 
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AFS summary 

AFS benefits 

– AFS scales well 

– Uniform name space 

– Read-only replication 

– Security model supports mutual authentication, data encryption 

 

AFS drawbacks 

– Session semantics 

– Directory based permissions 

– Uniform name space 
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CODA 
COnstant Data Availability 
Carnegie-Mellon University 

 
c. 1990-1992 
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CODA Goals 

Descendant of AFS 

 CMU, 1990-1992 

 

Goals 

1. Provide better support for replication than AFS 

 – support shared read/write files 

 

2. Support mobility of PCs 
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Mobility 

• Goal: Improve fault tolerance 

• Provide constant data availability in disconnected 

environments 

• Via hoarding (user-directed caching) 

– Log updates on client 

– Reintegrate on connection to network (server) 
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Modifications to AFS 

• Support replicated file volumes 

• Extend mechanism to support disconnected operation 

• A volume can be replicated on a group of servers 

– Volume Storage Group (VSG) 

• Replicated volumes 

– Volume ID used to identify files is a Replicated Volume ID 

– One-time lookup 

• Replicated volume ID  list of servers and local volume IDs 

• Cache results for efficiency 

– Read files from any server 

– Write to all available servers 
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Disconnected volume servers 

AVSG: Accessible Volume Storage Group 

– Subset of VSG 

 

What if some volume servers are down? 

 On first download, contact everyone you can and get a 

version timestamp of the file 
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Reconnecting disconnected servers 

If the client detects that some servers have old versions 

– Some server resumed operation 

 

– Client initiates a resolution process 

• Updates servers: notifies server of stale data 

• Resolution handled entirely by servers 

• Administrative intervention may be required 

(if conflicts) 
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AVSG = Ø 

• If no servers are accessible 

– Client goes to disconnected operation mode 

• If file is not in cache 

– Nothing can be done… fail 

• Do not report failure of update to server 

– Log update locally in Client Modification Log (CML) 

– User does not notice 
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Reintegration 

Upon reconnection 

– Commence reintegration 

 

Bring server up to date with CML log playback 

– Optimized to send latest changes 

 

Try to resolve conflicts automatically 

– Not always possible 
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Support for disconnection 

Keep important files up to date 

– Ask server to send updates if necessary 

 

Hoard database 

– Automatically constructed by monitoring the user’s activity 

– And user-directed prefetch 

October 31, 2016 © 2014-2016 Paul Krzyzanowski 57 



CODA summary 

• Session semantics as with AFS 

• Replication of read/write volumes 

– Clients do the work of writing replicas (extra bandwidth) 

– Client-detected reintegration 

• Disconnected operation 

– Client modification log 

– Hoard database for needed files 

• User-directed prefetch 

– Log replay on reintegration 
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DFS (AFS v3) 

Distributed File System 
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DFS 

• Goal 

– AFS: scalable performance but session semantics were hard to live with 

– Create a file system similar to AFS but with a strong consistency model 

 

• History 

– Part of Open Group’s Distributed Computing Environment 

– Descendant of AFS - AFS version 3.x 

 

• Assume (like AFS): 

– Most file accesses are sequential 

– Most file lifetimes are short 

– Majority of accesses are whole file transfers 

– Most accesses are to small files 
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Caching and Server Communication 

• Increase effective performance with 

– Caching data that you read 

• Safe if multiple clients reading, nobody writing 

– read-ahead 

• Safe if multiple clients reading, nobody writing 

– write-behind (delaying writes to the server) 

• Safe if only one client is accessing file 

 

• Goal: 

– Minimize times client informs server of changes, use fewer 

messages with more data vs. lots of messages with little data 
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DFS Tokens 

Cache consistency 

maintained by tokens 

 

Token 

–Guarantee from server that a 

client can perform certain 

operations on a cached file 

 

–Server grants & revokes tokens 

 

• Open tokens 
– Allow token holder to open a file 

– Token specifies access 
(read, write, execute, exclusive-write) 

• Data tokens 
– Applies to a byte range 

– read token - can use cached data 

– write token - write access, cached 
writes 

• Status tokens 
– read: can cache file attributes 

– write: can cache modified attributes 

• Lock tokens 
– Holder can lock a byte range of a file 
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Living with tokens 

• Server grants and revokes tokens 

– Multiple read tokens OK 

– Multiple read and a write token or multiple write tokens not OK if 

byte ranges overlap 

• Revoke all other read and write tokens 

• Block new request and send revocation to other token holders 
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DFS key points 

• Caching 

– Token granting mechanism 

• Allows for long term caching and strong consistency 

– Caching sizes: 8K – 256K bytes 

– Read-ahead (like NFS) 

• Don’t have to wait for entire file before using it as with AFS 

• File protection via access control lists (ACLs) 

• Communication via authenticated RPCs 

• Essentially AFS v2 with server-based token granting 

– Server keeps track of who is reading and who is writing files 

– Server must be contacted on each open and close operation to 

request token 

 

October 31, 2016 © 2014-2016 Paul Krzyzanowski 64 



SMB 
Server Message Blocks 
Microsoft 

 
c. 1987 
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SMB Goals 

• File sharing protocol for Windows 9x/NT/20xx/ME/XP/Vista/Windows 

7/Windows 8/Windows 10 … 

• Protocol for sharing: 

Files, devices, communication abstractions (named pipes), mailboxes 

 

• Servers: make file system and other resources available to clients 

• Clients: access shared file systems, printers, etc. from servers 

 

Design  Priority: 

locking and consistency over client caching 
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SMB Design 

• Request-response protocol 
– Send and receive message blocks 

• name from old DOS system call structure 

– Send request to server (machine with resource) 

– Server sends response 

• Connection-oriented protocol 
– Persistent connection – “session” 

• Each message contains: 
– Fixed-size header 

– Command string (based on message) or reply string 
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Message Block 

• Header: [fixed size] 

– Protocol ID 

– Command code (0..FF) 

– Error class, error code 

– Tree ID – unique ID for resource in use by client (handle) 

– Caller process ID 

– User ID 

– Multiplex ID (to route requests in a process) 

• Command: [variable size] 

– Param count, params, #bytes data, data 
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SMB commands 

• Files 

– Get disk attributes 

– create/delete directories 

– search for file(s) 

– create/delete/rename file 

– lock/unlock file area 

– open/commit/close file 

– get/set file attributes 

• Print-related 

– Open/close spool file 

– write to spool 

– Query print queue 

 

• User-related 

– Discover home system for user 

– Send message to user 

– Broadcast to all users 

– Receive messages 
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Protocol Steps 

• Establish connection 

 

October 31, 2016 © 2014-2016 Paul Krzyzanowski 70 



Protocol Steps 

• Establish connection 

• Negotiate protocol 

– negprot SMB 

– Responds with version number of protocol 
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Protocol Steps 

• Establish connection 

• Negotiate protocol 

• Authenticate/set session parameters 

– Send sesssetupX SMB with username, password 

– Receive NACK or UID of logged-on user 

– UID must be submitted in future requests 
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Protocol Steps 

• Establish connection 

• Negotiate protocol - negprot 

• Authenticate - sesssetupX 

• Make a connection to a resource (similar to mount) 

– Send tcon (tree connect) SMB with name of shared resource 

– Server responds with a tree ID (TID) that the client will use in future 

requests for the resource 

 

October 31, 2016 © 2014-2016 Paul Krzyzanowski 73 



Protocol Steps 

• Establish connection 

• Negotiate protocol - negprot 

• Authenticate - sesssetupX 

• Make a connection to a resource – tcon 

• Send open/read/write/close/… SMBs 
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SMB Evolves 

Common Internet File System (1996) 

SMB 2 (2006) 

SMB 3 (2012) 
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SMB Evolves 

• History 

– SMB was reverse-engineered for non-Microsoft platforms 

• samba.org 

– Microsoft released SMB protocol to X/Open in 1992 

– Common Internet File System (CIFS) 

• SMB as implemented in 1996 for Windows NT 4.0 
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Caching and Server Communication 

• Increase effective performance with 

– Caching 

• Safe if multiple clients reading, nobody writing 

– read-ahead 

• Safe if multiple clients reading, nobody writing 

– write-behind 

• Safe if only one client is accessing file 

 

• Minimize times client informs server of changes 
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Oplocks 

Server grants opportunistic locks (oplocks) to client 
– Oplock tells client how/if it may cache data 

– Similar to DFS tokens (but more limited) 

 

Client must request an oplock 
– oplock may be 

• Granted 

• Revoked by the server at some future time 

• Changed by server at some future time 
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Level 1 oplock (exclusive access) 

– Client can open file for exclusive access 

– Arbitrary caching 

– Cache lock information 

– Read-ahead 

– Write-behind 

 

If another client opens the file, the server has former client 

break its oplock: 

– Client must send server any lock and write data and acknowledge 

that it does not have the lock 

– Purge any read-aheads 
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Level 2 oplock (multiple readers) 

• Level 1 oplock is replaced with a Level 2 lock if another 

process tries to read the file 

• Multiple clients may have the same file open as long as 

none are writing 

• Cache reads, file attributes 

– Send other requests to server 

 

• Level 2 oplock revoked if any client opens the file for writing 
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Batch oplock (remote open even if local closed) 

• Client can keep file open on server even if a local process 

that was using it has closed the file 

– Exclusive R/W open lock + data lock + metadata lock 

 

• Client requests batch oplock if it expects programs may 

behave in a way that generates a lot of traffic (e.g. 

accessing the same files over and over) 

– Designed for Windows batch files 

 

• Batch oplock is exclusive: one client only 

– revoked if another client opens the file 
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Filter oplock (allow preemption) 

• Open file for read or write 

• Allow clients with filter oplock to be suspended while 

another process preempted file access. 

– E.g., indexing service can run and open files without causing 

programs to get an error when they need to open the file 

• Indexing service is notified that another process wants to access the file. 

• It can abort its work on the file and close it or finish its indexing and then 

close the file. 
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Leases (SMB ≥ 2.1; Windows ≥ 7) 

• Same purpose as oplock: control caching 

• Lease types 

– Read-cache (R) lease: cache results of read; can be shared 

– Write-cache (W) lease: cache results of writes; exclusive 

– Handle-cache (H) lease: cache file handles; can be shared 

• Optimizes re-opening files 

• Leases can be combined: R, RW, RH, RWH 

• Leases define oplocks: 

– Read oplock (R) – essentially same as Level 2 

– Read-handle (RH) – essentially same as Batch 

– Read-write (RW)– essentially the same as Level 1 

– Read-write-handle (RWH) 
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No oplock 

• All requests must be sent to the server 

 

• Can work from cache only if byte range was locked by 

client 
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Microsoft Dfs 

• “Distributed File System” 

– Provides a logical view of files & directories 

– Organize multiple SMB shares into one file system 

– Provide location transparency & redundancy 

• Each computer hosts volumes 

 \\servername\dfsname 

Each Dfs tree has one root volume and one level of leaf volumes. 

• A volume can consist of multiple shares 

– Alternate path: load balancing (read-only) 

– Similar to Sun’s automounter 

• Dfs = SMB + naming/ability to mount server shares on other server shares 
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Redirection via referrals 

• A share can be replicated (read-only) or moved through 

Microsoft’s Dfs 

 

• Client opens old location: 

– Receives STATUS_DFS_PATH_NOT_COVERED 

– Client requests referral: 

  TRANS2_DFS_GET_REFERRAL 

– Server replies with new server  
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SMB (CIFS) Summary 

• Stateful model with strong consistency 

• Oplocks offer flexible control for distributed consistency 

– Oplocks mechanism supported in base OS: Windows 

NT/XP/Vista/7/8/9/10, 20xx 

• Dfs offers namespace management 
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SMB2 and SMB3 

• SMB was… 

– Chatty: common tasks often required multiple round trip messages 

– Not designed for WANs 

• SMB 2 

– Protocol dramatically cleaned up 

– New capabilities added 

– SMB2 is the default network file system in Apple Mavericks (10.9) 

• SMB3 

– Added RDMA and multichannel support; end-to-end encryption 

• RDMA = Remote DMA (Direct Memory Access) 

– Windows 8 / Windows Server 2012: SMB 3.0 

– SMB3 was default on Apple Yosemite (10.10) 
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SMB2 Additions 

• Reduced complexity 

– From >100 commands to 19 

• Pipelining support 

– Send additional commands before the response to a previous one 

is received 

– Credit-based flow control 

• Goal: keep more data in flight and use available network bandwidth 

• Server starts with a small # of “credits” and scales up as needed 

• Server sends credits to client 

• Client needs credits to send a message and decrements credit balance 

• Allows server to control buffer overflow 

• Note: TCP uses congestion control, which yields to data loss and wild 

oscillations in traffic intensity 

 

October 31, 2016 © 2014-2016 Paul Krzyzanowski 89 



SMB2 Additions 

• Compounding support 

– Avoid the need to have commands that combine operations 

– Send an arbitrary set of commands in one request 

– E.g., instead of RENAME: 

• CREATE (create new file or open existing) 

• SET_INFO 

• CLOSE 

• Larger reads/writes 

• Caching of folder & file properties 

• “Durable handles” 

– Allow reconnection to server if there was a temporary loss of 

connectivity 

October 31, 2016 © 2014-2016 Paul Krzyzanowski 90 



Benefits 

• Transfer 10.7 GB over 1 Gbps WAN link with 76 ms RTT 

– SMB: 5 hours 40 minutes: rate = 0.56 MB/s 

– SMB2: 7 minutes, 45 seconds: rate = 25 MB/s 

 

October 31, 2016 © 2014-2016 Paul Krzyzanowski 91 



SMB3 

• Key features 

– Multichannel support for network scaling 

– Transparent network failover 

– “SMBDirect” – support for Remote DMA in clustered environments 

• Enables direct, low-latency copying of data blocks from remote memory 
without CPU intervention 

– Direct support for virtual machine files 

• Volume Shadow Copy 

• Enables volume backups to be performed while apps continue to write to 

files. 

– End-to-end encryption 
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NFS version 4 

Network File System 

Sun Microsystems 
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NFS version 4 enhancements 

• Stateful server 

• Compound RPC 

– Group operations together 

– Receive set of responses 

– Reduce round-trip latency 

• Stateful open/close operations 

– Ensures atomicity of share reservations for windows file sharing 

(CIFS) 

– Supports exclusive creates 

– Client can cache aggressively 
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NFS version 4 enhancements 

• create, link, open, remove, rename 

– Inform client if the directory changed during the operation 

• Strong security 

– Extensible authentication architecture 

• File system replication and migration 

– Mirror servers can be configured 

– Administrator can distribute data across multiple servers 

– Clients don’t need to know where the data is: server will send 

referrals 

• No concurrent write sharing or distributed cache coherence 
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NFS version 4 enhancements 

• Stateful locking 

– Clients inform servers of lock requests 

– Locking is lease-based; clients must renew leases 

• Improved caching 

– Server can delegate specific actions on a file to enable more 

aggressive client caching 

– Close-to-open consistency 

• File changes propagated to server when file is closed 

• Client checks timestamp on open to avoid accessing stale cached copy 

– Similar to CIFS oplocks 

• Clients must disable caching to share files 

• Callbacks 

– Notify client when file/directory contents change 
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Review: Core Concepts 

• NFS 

– RPC-based access 

• AFS 

– Long-term caching 

• DFS 

– AFS + tokens for consistency and efficient caching 

• CODA 

– Read/write replication & disconnected operation 

• SMB/CIFS 

– RPC-like access with strong consistency 

– Oplocks (tokens) to support caching 

– Dfs: add-on to provide a consistent view of volumes (AFS-style) 
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The End 
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