
Distributed Systems

17a. Distributed Lookup: Amazon Dynamo

Paul Krzyzanowski

Rutgers University

Fall 2016

1 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Distributed Hash Table

Case Study

Amazon Dynamo

2 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Amazon Dynamo

• In an infrastructure with millions of components, something is always

failing!

– Failure is the normal case

• A lot of services within Amazon only need primary-key access to data

– Best seller lists, shopping carts, preferences, session management, sales

rank, product catalog

– No need for complex querying or management offered by an RDBMS

– Full relational database is overkill: limits scale and availability

• Still not easy to scale or load balance RDBMS on a large scale

• Dynamo: not exposed as a web service

– Used to power parts of Amazon’s services

– Highly available, key-value storage system

 3 November 21, 2016

Core Assumptions & Design Decisions

• Two operations: get(key) and put(key, data)

– Binary objects (data) identified by a unique key

– Objects tend to be small (< 1MB)

• ACID gives poor availability

– Use weaker consistency (C) for higher availability.

• Apps should be able to configure Dynamo for desired latency &

throughput

– Balance performance, cost, availability, durability guarantees.

• At least 99.9% of read/write operations must be performed within a

few hundred milliseconds:

– Avoid routing requests through multiple nodes

• Dynamo can be thought of as a zero-hop DHT

4 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Core Assumptions & Design Decisions

• Incremental scalability

– System should be able to grow by adding a storage host (node) at a time

• Symmetry

– Every node has the same set of responsibilities

• Decentralization

– Favor decentralized techniques over central coordinators

• Heterogeneity (mix of slow and fast systems)

– Workload partitioning should be proportional to capabilities of servers

5 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Consistency & Availability

• Strong consistency & high availability cannot be achieved

simultaneously

• Optimistic replication techniques – eventually consistent model

– propagate changes to replicas in the background

– can lead to conflicting changes that have to be detected & resolved

• When do you resolve conflicts?

– During writes: traditional approach – reject write if cannot reach all
(or majority) of replicas

– During reads: Dynamo approach

• Design for an "always writable" data store - highly available

• read/write operations can continue even during network partitions

• Rejecting customer updates won't be a good experience

– A customer should always be able to add or remove items in a shopping cart

6 November 21, 2016

Consistency & Availability

• Who resolves conflicts?

– Choices: the data store system or the application?

• Data store

– Application-unaware, so choices limited

– Simple policy, such as "last write wins”

• Application

– App is aware of the meaning of the data

– Can do application-aware conflict resolution

– E.g., merge shopping cart versions to get a unified shopping cart.

• Fall back on "last write wins" if app doesn't want to bother

7 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Reads & Writes

Two operations:

get(key) returns

1. object or list of objects with conflicting versions

2. context (resultant version per object)

put(key, context, value): stores replicas

– key is hashed with MD5 to create a 128-bit identifier that is used to

determine the storage nodes that serve the key

 hash(key) identifies node

– the nodes that hold replicas are based on the key.

– context: ignored by the application but includes version of object

8 November 21, 2016

Partitioning

• Break up database into chunks distributed over all nodes

– Key to scalability

• Relies on consistent hashing

– Regular hashing: change in # slots requires all keys to be remapped

– Consistent hashing:

• K/n keys need to be remapped, K = # keys, n = # slots

• Logical ring of nodes: just like Chord

– Each node assigned random value in the hash space: position in ring

– Responsible for all hash values between its value and predecessor’s value

– Hash(key); then walk ring clockwise to find first node with position>hash

– Adding/removing nodes affects only immediate neighbors

9 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Partitioning: virtual nodes

• A node is assigned to multiple points in the ring

• Each point is a “virtual node”

10 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Dynamo virtual nodes

• A physical node holds contents of multiple virtual nodes

• In this example: 2 physical nodes, 5 virtual nodes

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15
Node 3: keys 2, 3

Node 8: keys 4, 5, 6, 7, 8

Node 10: keys 9, 10

Node 14: keys 11, 12, 13, 14

Node A

Node B

Node 1: keys 15, 0, 1

11 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Partitioning: virtual nodes

Advantages: balanced load distribution

• If a node becomes unavailable, load is evenly dispersed among available

nodes

• If a node is added, it accepts an equivalent amount of load from other

available nodes

• # of virtual nodes per system can be based on the capacity of that node

– Makes it easy to support changing technology and addition of new, faster systems

12 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Replication

• Data replicated on N hosts (N is configurable)

– Key is assigned a coordinator node (via hashing)

– Coordinator is in charge of replication

• Coordinator replicates keys at the N-1 clockwise

successor nodes in the ring

13 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Dynamo Replication

Coordinator replicates keys at the N-1 clockwise successor

nodes in the ring

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Node 8 holds replicas for

Nodes 10 and 14

Node 10 holds replicas for

Node 14 and 1

Node 14 holds replicas for

Nodes 1 and 3

Example: N=3

14 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Versioning

• Not all updates may arrive at all replicas

• Application-based reconciliation

– Each modification of data is treated as a new version

• Vector clocks are used for versioning

– Capture causality between different versions of the same object

– Vector clock is a set of (node, counter) pairs

– Returned as a context from a get() operation

15 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Availability

• Configurable values

– R: minimum # of nodes that must participate in a successful read operation

– W: minimum # of nodes that must participate in a successful write

operation

• Metadata hints to remember original destination

– If a node was unreachable, the replica is sent to another node in the ring

– Metadata sent with the data contains a hint stating the original desired
destination

– Periodically, a node checks if the originally targeted node is alive

• if so, it will transfer the object and may delete it locally to keep # of replicas in the

system consistent

• Data center failure

– System must handle the failure of a data center

– Each object is replicated across multiple data centers

16 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Storage Nodes

Each node has three components

1. Request coordination

– Coordinator executes read/write requests on behalf of requesting clients

– State machine contains all logic for identifying nodes responsible for a

key, sending requests, waiting for responses, retries, processing retries,

packaging response

– Each state machine instance handles one request

2. Membership and failure detection

3. Local persistent storage

– Different storage engines may be used depending on application needs

• Berkeley Database (BDB) Transactional Data Store (most popular)

• BDB Java Edition

• MySQL (for large objects)

• in-memory buffer with persistent backing store

17 November 21, 2016 © 2014-2016 Paul Krzyzanowski

Amazon S3 (Simple Storage Service)

Commercial service that implements many of Dynamo’s features

• Storage via web services interfaces (REST, SOAP, BitTorrent)

– Stores more than 449 billion objects

– 99.9% uptime guarantee (43 minutes downtime per month)

– Proprietary design

– Stores arbitrary objects up to 5 TB in size

• Objects organized into buckets and within a bucket identified by a unique

user-assigned key

• Buckets & objects can be created, listed, and retrieved via REST or SOAP

– http://s3.amazonaws/bucket/key

• Objects can be downloaded via HTTP GET or BitTorrent protocol

– S3 acts as a seed host and any BitTorrent client can retrieve the file

– reduces bandwidth costs

• S3 can also host static websites

18 November 21, 2016 © 2014-2016 Paul Krzyzanowski

The end

November 21, 2016 © 2014-2016 Paul Krzyzanowski 19

