Distributed Systems
21. Graph Computing Frameworks

Paul Krzyzanowski
Rutgers University

Fall 2016

_

November21, 2016 © 2014-2016 Paul Krzyzanowski

_

Can we make MapReduce easier?

November21, 2016 © 2014-2016 Paul Krzyzanowski

/ Apache Pig

« Why?
— Make it easy to use MapReduce via scripting instead of Java
— Make it easy to use multiple MapReduce stages
— Built-in common operations for join, group, filter, etc.

* How to use?
— Use Grunt —the pig shell
— Submit a script directly to pig
— Use the PigServer Java class
— PigPen — Eclipse plugin

» Pig compiles to several Hadoop MapReduce jobs

.

November21, 2016 © 2014-2016 Paul Krzyzanowski

/ Apache Pig

/ Count Job

(in Pig Latin)
A = LOAD ‘myfile’ AS (x, y, 2);
B = FILTER A by x> 0;
C = GROUP B by x;

D = FOREACH A GENERATE
x, COUNT(B);

STORE D into ’output’;

~

/ Pig Framework\

Parse
Check

v

.

\ 4

-~

Optimize
Plan Execution

Submit jar to Hadoop

Monitor progress /

T

\ 4

-

Hadoop
Execution

* Map: Filter

* Reduce: Counter

~

November 21,2016

© 2014-2016 Paul Krzyzanowski

Pig: Loading Data

Load/store relations in the following formats:

 PigStorage: field-delimited text

BinStorage: binary files

BinaryStorage: single-field tuples with a value of bytearray

TextLoader: plain-text

PigDump: stores using toString() on tuples, one per line

=z

ovember21, 2016 © 2014-2016 Paul Krzyzanowski 5

-

Example

4)

log = LOAD ‘test.log’ AS (user, timestamp, query);

grpd = GROUP log by user;

cntd = FOREACH grpd GENERATE group, COUNT(log);
fitrd = FILTER cntd BY cnt > 50;

srtd = ORDER fltrd BY cnt;

STORE srtd INTO ‘output’;

Each statement defines a new dataset
— Datasets can be given aliases to be used later

FOREACH iterates over the members of a "bag”
— Inputis grpd: list of log entries grouped by user
— Outputis group, COUNT(log): list of {user, count}

FILTER applies conditional filtering

ORDER applies sorting

November21, 2016 © 2014-2016 Paul Krzyzanowski

.

E The image part with relationship ID rId2 was not found
in the file.

See pig.apache.org
for full documentation

November 21,2016

© 2014-2016 Paul Krzyzanowski

(MapReduce isn’'t always the answer

« MapReduce works well for certain problems
— Provides automatic parallelization
— Automatic job distribution

 For others
— May require many iterations

— Data locality usually not preserved between Map and Reduce
» Lots of communication between map and reduce workers

.

November21, 2016 © 2014-2016 Paul Krzyzanowski

/ Bulk Synchronous Parallel (BSP)

« Computing model for parallel computation

« Series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization

Initial data Compute Compute

Initial data Compute

Initial data Compute Compute]

g g

Initial data Compute Compute

38!

| —
Ciimsss

e
~——
—

| |
Superstep O Superstep 1

.

November21, 2016 © 2014-2016 Paul Krzyzanowski

(Bulk Synchronous Parallel (BSP)

Superstep 0 Superstep 1 Superstep 2 Superstep 3 Superstep 4 Superstep 5

.

November 21,2016 © 2014-2016 Paul Krzyzanowski 10

/ Bulk Synchronous Parallel (BSP)

_

« Series of supersteps
1. Concurrent computation

2. Communication

3. Barrier synchronization

Initial data

Compute

Initial data

Compute

Initial data

Compute

Initial data

111l

Compute

e

assigned to processors

other concurrent computation
Computation time may vary

Processes (workers) are randomly \

Each process uses only local data
Each computationis asynchronous of

Compute

Compute

Compute]

111l

Compute

~——
—
~——

|
Superstep O

|
Superstep 1

November21, 2016

© 2014-2016 Paul Krzyzanowski

[Bulk Synchronous Parallel (BSP)

« Series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization

Start of superstep:

Messages received
by all workers

[End of superstep:

Initial data Compute

Initial data Compute

Initial data Compute

Initial data Compute

111l

e
~——

|
Superstep O

_

Messages delivered
to all workers

» Messaging is restricted to the end of a \

computation superstep

» Each worker sends a message to O or

more workers

* These messages are inputs forthe next

superstep

Compute

Compute

Compute]

111l

Compute

—

|
Superstep 1

November21, 2016

© 2014-2016 Paul Krzyzanowski

/ Bulk Synchronous Parallel (BSP)

_

« Series of supersteps
1. Concurrent computation
2. Communication

K The next superstep does not begin until\
all messages have beenreceived

» Barriers ensure no deadlock: no circular
dependency can be created

3. Barrier synchronization

Initial data Compute

Initial data Compute

Initial data Compute

Initial data

111l

Compute

e
~——

|
Superstep O

/

» Provide an opportunity to checkpoint
results for fault tolerance

— If failure, restart computation from last
superstep

/

Compute

Compute

Compute]

111l

Compute

—
~——

|
Superstep 1

November21, 2016

© 2014-2016 Paul Krzyzanowski

-

BSP Implementation: Apache Hama

« Hama: BSP framework on top of HDFS
— Provides automatic parallelization & distribution

— Uses Hadoop RPC
« Data is serialized with Google Protocol Buffers

— Zookeeper for coordination (Apache version of Google’s Chubby)
« Handles notifications for Barrier Sync

« Good for applications with data locality

— Matrices and graphs
— Algorithms that require a lot of iterations

_"\

.

November21, 2016 © 2014-2016 Paul Krzyzanowski

14

/ Hama programming (high-level)

* Pre-processing
— Define the number of peers for the job
— Splitinitial inputs for each of the peers to run their supersteps
— Framework assigns a unigque ID to each worker (peer)

« Superstep: the worker function is a superstep
— getCurrentMessage() — input messages from previous superstep
— Compute — your code
— send(peer, msg) — send messages to a peer
— sync() — synchronize with other peers (barrier)

* Filel/O .~ Bigtable
— Key/value model used by Hadoop MapReduce & HBase
— readNext(key, value)
— write(key, value)

.

November21, 2016 © 2014-2016 Paul Krzyzanowski

15

-

For more information

.

 Architecture, examples, API

» Take a look at:
— Apache Hama project page
» http://hama.apache.org
— Hama BSP tutorial
* https://hama.apache.org/hama_bsp _tutorial.ntml
— Apache Hama Programming document
« http://bit.ly/1aiFbXS

http://people.apache.org/~tjungblut/downloads/hamadocs/ApacheHamaBSPProgrammingmodel_06.pdf

November21, 2016 © 2014-2016 Paul Krzyzanowski

16

Graphs are common in computing

Social links
— Friends

— Academic citations Frpe
— Music §i008

— Movi i
ovies . ;75‘

Web pages

Roads e et

- Disease outbreaks s WO et

Network connectivity Vo

November21, 2016 © 2014-2016 Paul Krzyzanowski

17

-
Processing graphs on a large scale is hard

« Computation with graphs
— Poor locality of memory access
— Little work per vertex

* Distribution across machines

— Communication complexity
— Failure concerns

 Solutions
— Application-specific, custom solutions

— MapReduce or databases
» But require many iterations (and a lot of data movement)

— Single-computer libraries: limits scale
— Parallel libraries: do not address fault tolerance
— BSP: close but too general

.

November21, 2016 © 2014-2016 Paul Krzyzanowski

18

-
Pregel: a vertex-centric BSP

* Input: directed graph

— Avertex is an object
« Each vertex uniquely identified with a name
« Each vertex has a modifiable value

— Directed edges: links to other objects
« Associated with source vertex
« Each edge has a modifiable value
« Each edge has a target vertex identifier

Pregel: A System for Large-Scale Graph Processing

Grzegorz Malewicz, Matthew H. Austern, Aart J. C, Bk, James C. Dehnert, lian Horn,
Naty Leiser, and Grzegorz Czajowski

Google, Inc
{malewicz,austern aicbik dehnert.ilan,naty,gczajj@googie.com

Categories and Subject Descriptors
D 1.3 [Programming Technbques): Coscwrem I'rogram
it~ Distributed progenming. D213 Software Engs-
newring - Resable Software Sewssbie hbrares

General Terms
Dwsign. Algurithne

L http://googleresearch.blogspot.com/2009/06/large-scale-graph-computing-at-google. html

November21, 2016 © 2014-2016 Paul Krzyzanowski

19

-

Pregel: computation

« Computation: series of supersteps
— Same user-defined function runs on each vertex

* Receives messages sent from the previous superstep

« May modify the state of the vertex or of its outgoing edges

* Sends messages that will be received in the next superstep
— Typically to outgoing edges
— But can be sentto any known vertex

* May modify the graph topology

« Each superstep end with a barrier (synchronization point)

.

November21, 2016 © 2014-2016 Paul Krzyzanowski

20

-
Pregel: termination

Pregel terminates when every vertex votes to halt

* Initially, every vertex is in an active state
— Active vertices compute during a superstep

« Each vertex may choose to deactivate itself by
voting to halt
— The vertex has no more work to do received
— Will not be executed by Pregel

— UNLESS the vertex receives a message
« Then it is reactivated
« Will stay active until it votes to halt again

message

Vertex

 Algorithm terminates when all vertices are inactive .
State Machine

and there are no messages in transit

.

November21, 2016 © 2014-2016 Paul Krzyzanowski 21

(
@

Pregel: output

.

« Qutputis the set of values output by the vertices

« Often a directed graph

— May be non-isomorphic to original since edges & vertices can be added or

deleted
... Or summary data

November 21,2016

© 2014-2016 Paul Krzyzanowski

22

Examples of graph computations

Shortest path to a node

— Each iteration, a node sends the shortest distance received to all neighbors

Cluster identification
— Each iteration: get info about clusters from neighbors.
— Add myself

— Pass useful clusters to neighbors (e.g., within a certain depth or size)
 May combine related vertices
« QOutput is a smaller set of disconnected vertices representing clusters of interest

Graph mining
— Traverse a graph and accumulate global statistics

Page rank

— Each iteration: update web page ranks based on messages from incoming

links.

November21, 2016 © 2014-2016 Paul Krzyzanowski

23

Simple example: find the maximum value

« Each vertex contains a value

In the first superstep:
— Avertex sends its value to its neighbors

In each successive superstep:

— If a vertex learned of a larger value from its incoming messages,
it sends it to its neighbors

— Otherwise, it votes to halt

Eventually, all vertices get the largest value

W hen no vertices change in a superstep, the algorithm terminates

November21, 2016 © 2014-2016 Paul Krzyzanowski

24

-
Simple example: find the maximum value

1. vertex value type; 2. edge value type
(none!); 3. message value type

Semi-pseudocode:

class MaxValueVertex

\.

: public Vertex<int, void,

int> {

void Compute (Messagelterator *msgs) {

int maxv
for (;
maxv

if (maxv

*MutableValue () =
OutEdgelIterator out =

for (

= GetValue() ;

Imsgs->Done () ; msgs->Next())

= max (msgs.Value (), maxv);

> GetValue()) ||

maxv,

(step

; l'out.Done(); out.Next())

} find maximum value

0)) {

sendMessageTo (out.Target () , maxv)

} else

VoteToHalt () ;

}
}
};

GetOutEdgeIterator () ;

send maximum
value to all
edges

November 21,2016

© 2014-2016 Paul Krzyzanowski

25

-
Simple example: find the maximum value

Superstep O

Superstep 1

Superstep 0: Each vertex propagates its own value to connected vertices

Superstep 1. V, updates its value: 6 > 3
V; updates its value: 6 > 1
V, and V, do not update so vote to halt

L O Active vertex O Inactive vertex

November21, 2016 © 2014-2016 Paul Krzyzanowski

26

4)
Simple example: find the maximum value

Superstep O

Superstep 1

Superstep 2

Superstep 2: V; receives a message — becomes active
V; updates its value: 6 > 2
V,, V,, and V3 do not update so vote to halt

L O Active vertex O Inactive vertex)

November21, 2016 © 2014-2016 Paul Krzyzanowski 27

(

Simple example: find the maximum value

.

Superstep 2

Superstep 3

Superstep 3: V; receives a message — becomes active

V3 receives a message — becomes active

No vertices update their value — all vote to halt
Done!

O Active vertex O Inactive vertex

November21, 2016 © 2014-2016 Paul Krzyzanowski

28

/
@

Locality

.

 Vertices and edges remain on the machine that does the
computation

 To run the same algorithm in MapReduce
— Requires chaining multiple MapReduce operations
— Entire graph state must be passed from Map to Reduce
... and again as input to the next Map

November21, 2016 © 2014-2016 Paul Krzyzanowski

30

/

Pregel API: Basic operations

.

A user subclasses a Vertex class

 Methods

— Compute(Messagelterator*): Executed per active vertex in each superstep
» Messagelterator identifies incoming messages from previous supersteps

— GetValue(): Get the current value of the vertex
— MutableValue(): Set the value of the vertex

— GetOutEdgelterator(): Get a list of outgoing edges
« .Target(): identify target vertex on an edge
» .GetValue(): get the value of the edge
« .MutableValue(): setthe value of the edge

— SendMessageTo(): send a message to a vertex
« Any number of messages can be sent
« Ordering among messages is not guaranteed
« A message can be sent to any vertex (but our vertex needs to have its ID)

November 21,2016 © 2014-2016 Paul Krzyzanowski 31

/

Pregel API: Advanced operations

Combiners

« Each message has an overhead — let’s reduce # of messages
— Many vertices are processed per worker (multi-threaded)
— Pregel can combine messages targeted to one vertex into one message

« Combiners are application specific
— Programmer subclasses a Combiner class and overrides Combine() method

« No guarantee on which messages may be combined

8 —_— 12 —_—
1 > —> 24 71 > —> 11
I
5 —— 7 11
6 — 15—
Combiner Combiner
Sums inputmessages Minimum value

.

November 21,2016 © 2014-2016 Paul Krzyzanowski 32

-

Pregel API: Advanced operations

Aggregators
 Handle global data

« Avertex can provide a value to an aggregator during a superstep
— Aggregator combines received values to one value
— Value is available to all vertices in the next superstep

« User subclasses an Aggregator class

« Examples
— Keep track of total edges in a graph
— Generate histograms of graph statistics
— Global flags: execute until some global condition is satisfied
— Election: find the minimum or maximum vertex

.

November21, 2016 © 2014-2016 Paul Krzyzanowski

33

-
Pregel API: Advanced operations

Topology modification

« Examples
— If we're computing a spanning tree: remove unneeded edges
— If we'’re clustering: combine vertices into one vertex

« Add/remove edges/vertices

« Modifications visible in the next superstep

.

November21, 2016 © 2014-2016 Paul Krzyzanowski

34

_

Pregel Design

November 21,2016

© 2014-2016 Paul Krzyzanowski

35

-
Execution environment

« Many copies of the program

—

don a cluster of machi SuusE| |sEmEs| |smsss
are started on a cluster or machines
EENEN| (NEEEN| (REEEE
EENEN| HNENEN| (HEREN
SENNN| |(SEEEE| (GEsEn
* One copy becomes the master SEEEE| |EEEEE| |EEEEE
— Will not be assigned a portion of the graph 'HENEE! ESEEE| 'ENEEE
— Responsible for coordination Rack
40-80 computers
|
I
’ - Cluster
» Cluster’'s name server = chubby 1,000 to 10,000+ COMpUters

— Master registers itself with the name service

— Workers contact the name service
to find the master

.

November21, 2016 © 2014-2016 Paul Krzyzanowski

-

Partition assignment

.

« Master determines # partitions in graph

« One or more partitions assigned to each worker
— Partition = set of vertices
— Default: for N partitions

hash(vertex ID) mod N = worker

May deviate: e.g., place vertices representing the same web site in one partition

— More than 1 partition per worker: improves load balancing

« Worker
— Responsible for its section of the graph
— Each worker knows the vertex assignments of other workers

November21, 2016 © 2014-2016 Paul Krzyzanowski

37

Input assignment

« Master assigns parts of the input to each worker
— Data usually sits in GFS or Bigtable

Input = set of records
— Record = vertex data and edges
— Assignment based on file boundaries

W orkerreads input
— If it belongsto any of the vertices it manages, messages sent locally
— Else worker sends messages to remote workers

After data is loaded, all vertices are active

November 21,2016 © 2014-2016 Paul Krzyzanowski 38

-

Computation

_

 Master tells each worker to perform a superstep !

« Worker: Deliver messages
— Iterates through vertices (one thread per partition) - v
— Calls Compute() method for each active vertex § Compute
— Delivers messages from the previous superstep . v

Send messages

— QOutgoing messages .
« Sent asynchronously p v
» Delivered before the end of the superstep Superstep done

« Whendone
— worker tells master how many vertices will be active in the next superstep

« Computation done when no more active vertices in the cluster
— Master may instruct workers to save their portion of the graph

November21, 2016 © 2014-2016 Paul Krzyzanowski

39

/

Handling failure

« Checkpointing
— Controlled by master ... every N supersteps

— Master asks a worker to checkpoint at the start of a superstep

» Save state of partitions to persistent storage
— Vertexvalues
— Edgevalues
— Incoming messages

— Master is responsible for saving aggregator values

« Master sends “ping” messages to workers

— If worker does not receive a ping within a time period
= Worker terminates

— If the master does not hear from a worker
= Master marks worker as failed

« When failure is detected
— Master reassigns partitions to the current set of workers
— All workers reload partition state from most recent checkpoint

.

November21, 2016 © 2014-2016 Paul Krzyzanowski

40

-

Pregel outside of Google

.

« Apache Giraph ::f:':t:’c R
— Initially created at Yahoo SRR o
— Used at Facebook to analyze the social graph of users ‘.':3" ' “‘ ‘g'.-‘

L) - Ya?
— Runs under Hadoop MapReduce framework & -"f_‘ oa
. Runs as a Map-only job GIRAP }_|1
« Adds fault-tolerance to the master by using ZooKeeper for coordination
« Uses Java instead of C++ ™~
== Chubby

November 21,2016

© 2014-2016 Paul Krzyzanowski

41

-
Conclusion

« Vertex-centric approach to BSP

« Computation = set of supersteps
— Compute() called on each vertex per superstep
— Communication between supersteps: barrier synchronization

 Hides distribution from the programmer
— Framework creates lots of workers
— Distributes partitions among workers
— Distributes input
— Handles message sending, receipt, and synchronization
— A programmer just has to think from the viewpoint of a vertex

» Checkpoint-based fault tolerance

.

November21, 2016 © 2014-2016 Paul Krzyzanowski

42

_

The End

November 21,2016

© 2014-2016 Paul Krzyzanowski

43

