CS 417

26 November 2018

Distributed Systems
25. Authentication

Paul Krzyzanowski
Rutgers University

Fall 2018

-

Novernber 26, 2018 ©2018 Paul Krzyzanowski

s

Authentication

-

* For a user (or process):

— Establish & verify identity
— Then decide whether to allow access to resources (= authorization)

Noverber 26, 2018 ©2018 Paul Kizyzanowski 2

(Authentication

Three factors:
—something you have

» Can be stolen

key, card

—something you know passwords
» Can be guessed, shared, stolen

—something you are biometrics
» Usually needs hardware, can be copied (sometimes)

» Once copied, you're stuck

-

Novernber 26, 2018 ©2018 Paul Krzyzanowski

Multi-Factor Authentication

Factors may be combined
- ATM machine: 2-factor authentication

*« ATM card something you have
* PIN something you know
- Password + code delivered via SMS: 2-factor authentication

« Password something you know
* Code validates that you possess your phone

Two passwords # Two-factor authentication

November 26, 2018 ©2018 Paul Krzyzanowski 4

(" Authentication: PAP

Password Authentication Protocol

login, password

client OK server

« Unencrypted, reusable passwords

« Insecure on an open network

« Also, password file must be protected from open access
— But administrators can still see everyone’s passwords

-

name:password
database

©2018 Paul Krzyzanowski

Novermber 26,2018

PAP: Reusable passwords

Paul Krzyzanowski

PROBLEM: Open access to the password file
What if the password file isn’t sufficiently protected and an intruder gets
hold of it? All passwords are now compromised!

Even if a trusted admin sees your password, this might also be your
password on other systems.

Solution:

Store a hash of the password in a file
— Given a file, you don’t get the passwords
— Have to resort to a dictionary or brute-force attack
— Example, passwords hashed with SHA-512 hashes (SHA-2)

Noverber 26, 2018 ©2018 Paul Krzyzanowski 6

CS 417 26 November 2018

(7 (N
What is salt? Authentication: CHAP
» How to speed up a dictionary attack Challenge-Handshake Authentication Protocol
— Create a table of precomputed hashes
— Search(hashed_password original_password “ronee
(P) — original_p challenge/
» Salt = random string (typically up to 16 characters) J— hash(challenge, secret) server
— Concatenated with the password
— Stored with the password file (it's not secret) OK
— Even if you know the salt, you cannot use precomputed hashes to Has shared secret Has shared secret
search for a password (because the salt is prefixed)
— Makes a table of precomputed hashes prohibitively huge The challenge is a nonce (random bits).
We create a hash of the nonce and the secret.
An intruder does not have the secret and cannot do this!
- J & J
Noveroer 6, 2018 ©2018 Paul Kizyzanowski 7 Noveroer 26, 2018 ©2018 Paut Kzyzarowski s
(. . \ r . . . \
CHAP authentication Time-Based Authentication
Time-based One-time Password (TOTP) algorithm
Alice network host
eslice” “alice” look up alice’s « Both sides share a secret key
key, K « User runs TOTP function to generate a one-time password
one_time_password = hash(secret_key, time)
generate random
, c challenge number C
R’=f(K,C) « User logs in with:
R’ — Name, password, and one_time_password
R=1(K C)
“welcome” D
R=R’? « Service generates the same password
%/—/ one_time_password = hash(secret_key, time)
an eavesdropper does not see K
- J - J
Noverber 25, 2018 ©2018 Paul Kizyzanowski 0 Novemoer 25, 2018 ©2018 Paul Kizyzanowski 0
(K K K i N (. 7
Guarding against man-in-the-middle
» Use a covert communication channel
— The intruder won'’t have the key
— Can't see the contents of any messages
— But you can’t send the key over that channel! PUb'IC Key Authentication
* Use signed messages
— Signed message = { message and encrypted hash of message }
— Both parties can reject unauthenticated messages
— The intruder cannot modify the messages
« Signatures will fail (they will need to know how to encrypt the hash)
- J N J
Novertber 6, 2018 ©2018 Paul Kizyzanowski T Noveroer 26,2018 ©2018 Paut Kizyzanoweki =

Paul Krzyzanowski 2

CS 417 26 November 2018

Public key authentication Public key authentication

Demonstrate we can encrypt or decrypt a nonce Bob:

This shows we have the right key 1. Look up “alice” in a database of public keys

2. Decrypt the message from Alice using Alice’s public key
3. Iftheresultis S, then Bob is convinced he’s talking with Alice

« Alice wants to authenticate herself to Bob:
Arandom

« Bob: generates nonce, S bunch of bits

— Sends it to Alice

For mutual authentication, Alice has to present Bob with a

* Alice; encrypts S with her private key (signs it) nonce that Bob will encrypt with his private key and return
— Sends result to Bob

N _ J N i J
s] . B e — N
Public key authentication X.509 Certificates
* Public key authentication relies on binding identity to a ISO introduced a set of authentication protocols
public key

X.509: Structure for public key certificates:
Issuer = Certification Authority (CA)

— How do you know it really is Alice’s public key?

* One option:
get keys from a trusted source

* Problem: requires always going to the source

Issuer ' Signature
— cannot pass keys around version | serial # [algorithm | pistinguishea (\::)Ir':‘& Algorithm ‘
Name

. L . Subject Signature
Another option: sign the public key P iz (signed by CA)

— Contents cannot be modified

— digital certificate

X.509 v3 Digital Certificate

g Y, g Name, organization, locality, state, country, etc.)
s - , - ; B s — N
Reminder: What's a digital signature? X.5009 certificates
Hash of a message encrypted with the signer’s private key When you get a certificate

— Verify its signature:
« hash contents of certificate data

Alice Bob
« Decrypt CA's signature with CA's public key
% H(P) 1P
= =2 Obtain CA's public key (certificate) from trusted source
l S=Ea(H(P)) —> DA(S)
A
Certificates prevent someone from using a phony public key
to masquerade as another person
...If you trust the CA
N J N J

Novermber 26,2018 ©2018 Paul Krzyzanowski 17 Noverber 26, 2018 ©2018 Paul Krzyzanowski 8

Paul Krzyzanowski 3

CS 417

26 November 2018

-

SSL/TLS

Transport Layer Security

» Provide a transport layer security protocol
« After setup, applications feel like they are using TCP sockets
SSL: Secure Socket Layer

+ Created with HTTP in mind
— Web sessions should be secure
— Mutual authentication is usually not needed
« Client needs to identify the server but the server won’t know all clients
+ Rely on passwords after the secure channel is set up
+ SSL evolved to TLS (Transport Layer Security)
— SSL 3.0 was the last version of SSL ... and is considered insecure
— We use TLS now ... but often still call it SSL

Novernber 26, 2018 ©2018 Paul Krzyzanowski

Noverber 26, 2018 ©2018 Paul Kizyzanowski

Transport Layer Security (TLS)

« aka Secure Socket Layer (SSL), which is an older protocol
« Sits on top of TCP/IP

« Goal: provide an encrypted and possibly authenticated
communication channel
— Provides authentication via RSA and X.509 certificates
— Encryption of communication session via a symmetric cipher

« Hybrid cryptosystem: (usually, but also supports Diffie-Hellman)
— Public key for authentication
— Symmetric for data communication

« Enables TCP services to engage in secure, authenticated transfers
— http, telnet, ntp, ftp, smtp, ...

Novernber 26, 2018 ©2018 Paul Krzyzanowski

(TLS Protocol

(1) Client hello

Version & crypto information

(2) Server hello

Server certificate
(3) Verify server [client certificate request]
certificate

(4) Client key exchange

Send encrypted session key

[(5) Send client certificate]

[(6) Verify server

certificate
(7) Client done]

(8) Server done

(9) Communicate

Symmetric encryption + HMAC

November 26, 2018 ©2018 Paul Krzyzanowski

-

OAuth 2.0

Novermber 26,2018 ©2018 Paul Krzyzanowski

Service Authorization

* You want an app to access your data at some service
— E.g., access your Google calendar data

* But you want to:
— Not reveal your password to the app
— Restrict the data and operations available to the app
— Be able to revoke the app’s access to the data

-

Noverber 26, 2018 ©2018 Paul Krzyzanowski

Paul Krzyzanowski

CS 417 26 November 2018

4 R (7
OAuth 2.0: Open Authorization OAuth setup
» OAuth: framework for service authorization » OAuth is based on
— Allows you to authorize one website (consumer) to access data from — Getting a token from the service provider & presenting it each time an
another website (provider) — in a restricted manner application accesses an AP at the service
— URL redirection

— Designed initially for web services
— JSON data encapsulation

— Examples:
« Allow the Moo photo printing service to get photos from your Flickr account
« Allow the NY Times to tweet a message from your Twitter account . Register a service
* OpenlID Connect — Service provider (e.g., Flickr):
— Remote identification: use one login for multiple sites + Gets data about your application (name, creator, URL)

— Encapsulated within OAuth 2.0 protocol « Assigns the application (consumer) an ID & a secret

* Presents list of authorization URLs and scopes (access types)

- J - J

Novernber 26, 2018 ©2018 Paul Krzyzanowski 2 Noverber 26, 2018 ©2018 Paul Kizyzanowski 2

P
OAuth Entities How does authorization take place?

Authorization Service
server provider

Application needs an Access Token from the Service
(e.g., moo.com needs an access token from flickr.com)

— Application redirects user to Service Provider

-
fl Ickr + Request contains: client ID, client secret, scope (list of requested APIs)
Service Provider + User may need to authenticate at that provider
{app ID, secret} « User authorizes the requested access

+ Service Provider redirects back to consumer with a one-time-use authorization code

- {app ID, secret} — Application now has the Authorization Code
+ The previous redirect passed the Authorization Code as part of the HTTP request —
@ therefore not encrypted

i — Application exchanges Authorization Code for Access Token
Applicati + The legitimate app uses HTTPS (encrypted channel) & sends its secret
pplication + The application now talks securely & directly to the Service Provider

You want moo.com to access your photos on flickr + Service Provider retums Access Token

L — Application makes API requests to Service Provider using the Access Token
- J

November 26, 2018 ©2018 Paul Krzyzanowski 2 November 26, 2018 ©2018 Paul Krzyzanowski 2

~
Key Points

* You may still need to log into the
Provider’s OAuth service when
redirected

Identity Federation: OpenID Connect

O é * You approve the specific access
that you are granting

Google OAuth 2.0 Playground would like to

» The Service Provider validates
the requested access when it
gets a token from the Consumer

Play with it at the OAuth 2.0 Playground:
L https://developers.google.com/oauthplayground/) L)

Novermber 26,2018 ©2018 Paul Krzyzanowski 2 Noverber 26, 2018 ©2018 Paul Krzyzanowski 0

Paul Krzyzanowski 5

CS 417

26 November 2018

(Single Sign-On: OpenlD Connect

OpenlD Connect Authentication

« Designed to solve the problem of
— Having to get an ID per service (website)
— Managing passwords per site
— Layer on top of OAuth 2.0

« Decentralized mechanism for single sign-on
— Access different services (sites) using the same identity
« Simplify account creation at new sites
— User chooses which OpenlD provider to use
+ OpenlD does not specify authentication protocol — up to provider
— Website never sees your password

* OpenlD Connect is a standard but not the only solution
— Used by Google, Microsoft, Amazon Web Services, PayPal, Salesforce, ...
— Facebook Connect — popular alternative solution
(similar in operation but websites can share info with Facebook, offer friend
access, or make suggestions to users based on Facebook data)

» OAuth requests that you specify a “scope”
— List of access methods that the app needs permission to use

+ To enable user identification
— Specify “openid” as a requested scope

» Send request to server (identity provider)
— Server requests user ID and handles authentication

» Get back an access token
— If authentication is successful, the token contains:
« user ID
approved scope:
expiration
« etc.

S
} same as with OAuth requests for authorization

Novernber 26, 2018 ©2018 Paul Krzyzanowski 3

Noverber 26, 2018 ©2018 Paul Kizyzanowski

f Cryptographic toolbox

Examples

» Symmetric encryption
* Public key encryption
» One-way hash functions

* Random number generators
— Used for nonces and session keys

-

» Key exchange
— Public key cryptography

» Key exchange + secure communication
— Random # + Public key + symmetric cryptography

» Authentication
— Nonce (random #) + encryption

* Message authentication codes
— Hashes

« Digital signature
— Hash + encryption with private key

Novernber 26, 2018 ©2018 Paul Krzyzanowski 33

November 26, 2018 ©2018 Paul Krzyzanowski

The End

-

Novermber 26,2018 ©2018 Paul Krzyzanowski 35

Paul Krzyzanowski

