
CS 417 11/28/2016

Paul Krzyzanowski 1

Distributed Systems
24. Cry ptographic Systems: An Brief Introduction

Paul Krzyzanowski

Rutgers University

Fall 2016

1 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Cryptography  Security

Cry ptography may be a component of a secure sy stem

Adding cry ptography may not make a sy stem secure

2 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Cryptography: what is it good for?

• Authentication

– determine origin of message

• Integrity

– verify that message has not been modified

• Nonrepudiation

– sender should not be able to falsely deny that a message was sent

• Conf identiality

– others cannot read contents of the message

3 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Terms

Plaintext (cleartext) message P

Encry ption E(P)

Produces Ciphertext, C = E(P)

Decry ption, P = D(C)

Cipher = cry ptographic algorithm

4 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Terms: types of ciphers

• Restricted cipher

• Sy mmetric algorithm

• Public key algorithm

5 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Restricted cipher

Secret algorithm

• If y ou know the algorithm, y ou can encry pt & decry pt

• Vulnerable to:

– Leaking

– Reverse engineering

• Hard to v alidate its ef f ectiveness (who will test it?)

• Not a v iable approach!

6 November 28, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 11/28/2016

Paul Krzyzanowski 2

Symmetric-key algorithm

• Known algorithm but we introduce a secret parameter – the key

• Same secret key, K, for encryption & decryption

 C = EK(P)

 P = DK(C)

• Examples: AES, 3DES, IDEA, RC5

• Key length

– Determines number of possible keys

• DES: 56-bit key: 256 = 7.2 × 1016 keys

• AES-256: 256-bit key: 2256 = 1.1 × 1077 keys

– Brute force attack: try all keys

7 November 28, 2016 © 2013-2016 Paul Krzyzanowski

The power of 2

Adding one extra bit to a key doubles the search space

Suppose it takes 1 second to search through all keys with a 20-bit key

November 28, 2016 © 2013-2016 Paul Krzyzanowski 8

key length number of keys search time

20 bits 1,048,576 1 second

21 bits 2,097,152 2 seconds

32 bits 4.3 × 109 ~ 1 hour

56 bits 7.2 × 1016 2,178 years

64 bits 1.8 × 1019 > 557,000 years

256 bits 1.2 × 1077 3.5 × 1063 years

Distributed & custom hardware efforts typically allow us to search between 1 and
>100 billion 64-bit (e.g., RC5) keys per second

Communicating w ith symmetric cryptography

• Both parties must agree on a secret key, K

• Message is encry pted, sent, decry pted at other side

• Key distribution must be secret

– otherwise messages can be decrypted

– users can be impersonated

Alice

EK(P) DK(C)

Bob

9 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Key explosion

Each pair of users needs a separate key f or secure

communication

Alice Bob

KAB

2 users: 1 key

Bob Alice

KAB

Charles

KBC KAC

3 users: 3 keys

6 users: 15 keys

4 users: 6 keys

100 users: 4,950 keys

1000 users: 399,500 keys

n users: keys

2

1)(nn

10 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Key distribution

Secure key distribution is the biggest problem with

sy mmetric cry ptography

11 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Diffie-Hellman Key Exchange

Key distribution algorithm

– First algorithm to use public/priv ate “key s”

– Not public key encry ption

– Uses a one-way function

Based on dif f iculty of computing discrete logarithms in a

f inite f ield compared with ease of calculating

exponentiation

Allows us to negotiate a secret common key without f ear

of eav esdroppers

12 © 2013-2016 Paul Krzyzanowski November 28, 2016

CS 417 11/28/2016

Paul Krzyzanowski 3

Diffie-Hellman Key Exchange

All arithmetic performed in a field of integers modulo some large number

• Both parties agree on a large prime number p and a number  < p

• Each party generates a public/private key pair

 Private key for user i: Xi

 Public key for user i: Yi =

13

piX mod

© 2013-2016 Paul Krzyzanowski November 28, 2016

Diffie-Hellman exponential key exchange

• Alice has secret key XA

• Alice has public key YA

• Alice computes

• Bob has secret key XB

• Bob has public key YB

K = (Bob’s public key) (Alice’s private key) mod p

14

pYK AX

B mod

© 2013-2016 Paul Krzyzanowski November 28, 2016

Diffie-Hellman exponential key exchange

• Alice has secret key XA

• Alice has public key YA

• Alice computes

• Bob has secret key XB

• Bob has public key YB

• Bob computes

K’ = (Alice’s public key) (Bob’s private key) mod p

15

pYK BX

A modpYK AX

B mod

© 2013-2016 Paul Krzyzanowski November 28, 2016

Diffie-Hellman exponential key exchange

• Alice has secret key XA

• Alice has public key YA

• Alice computes

• expanding:

• Bob has secret key XB

• Bob has public key YB

• Bob computes

• expanding:

K is a common key, known only to Bob and Alice

K = K’

16

pYK AX

B mod pYK BX

A mod

pp AB XX mod)mod(

pYK AX

B mod

pAB XX mod

pYK BX

B mod

pp BA XX mod)mod(

pBA XX mod

© 2013-2016 Paul Krzyzanowski November 28, 2016

RSA Public Key Cryptography

• Ron Riv est, Adi Shamir, Leonard Adleman created a public

key encry ption algorithm in 1977

• Each user generates two key s:

– Private key (kept secret)

– Public key (can be shared with anyone)

• Algorithm based on the dif f iculty of factoring large numbers

– keys are functions of a pair of large (~300 digits) prime numbers

November 28, 2016 © 2013-2016 Paul Krzyzanowski 17

Public-key algorithm

Two related key s:

 C = EK1(P) P = DK2(C)

 C’ = EK2(P) P = DK1(C’)

Examples:

– RSA and Elliptic curve algorithms

– DSS (digital signature standard)

Key length

– Unlike symmetric cryptography, not every number is a valid key

– 3072-bit RSA = 256-bit elliptic curve = 128-bit symmetric cipher

– 15360-bit RSA = 521-bit elliptic curve = 256-bit symmetric cipher

18

K1 is a public key

K2 is a private key

November 28, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 11/28/2016

Paul Krzyzanowski 4

Communication with public key algorithms

Dif f erent keys for encry pting and decry pting

– No need to worry about key distribution

– Share public keys

– Keep private keys secret

19 November 28, 2016 © 2013-2016 Paul Krzyzanowski

EB(P) Db(C)

Alice Bob

Alice’s public key: KA

Bob’s public key: KB

Da(C) EA(P)

decrypt message with
Alice’s private key

encrypt message with
Alice’s public key

encrypt message with
Bob’s public key

decrypt message with
Bob’s private key

Communication with public key algorithms

20

(Alice’s private key: Ka) (Bob’s private key: Kb)

November 28, 2016 © 2013-2016 Paul Krzyzanowski

Hybrid Cryptosystems

• Session key: randomly-generated key for one communication session

• Use a public key algorithm to send the session key

• Use a symmetric algorithm to encrypt data with the session key

Public key algorithms are almost never used to encrypt messages

– MUCH slower; vulnerable to chosen-plaintext attacks

– RSA-2048 approximately 55x slower to encrypt and 2,000x slower to
decrypt than AES-256

© 2013-2016 Paul Krzyzanowski 21 November 28, 2016

K
EB(K)

Alice Bob

Bob’s public key: KB

encrypt session key with
Bob’s public key

K = Db(EB(K))

Communication with a hybrid cryptosystem

22

Pick a random session key, K

K

Bob decrypts K with
his private key

Now Bob knows the secret session key, K

November 28, 2016 © 2013-2016 Paul Krzyzanowski

EK(P) DK(C)

Alice Bob

Bob’s public key: KB

encrypt message using a
symmetric algorithm and

key K

decrypt message using a
symmetric algorithm and

key K

Communication with a hybrid cryptosystem

23

EB(K) K = Db(EB(K))

November 28, 2016 © 2013-2016 Paul Krzyzanowski

EK(P) DK(C)

Alice Bob

Bob’s public key: KB

decrypt message using a
symmetric algorithm and

key K

encrypt message using a
symmetric algorithm and

key K

Communication with a hybrid cryptosystem

24

EB(K) K = Db(EB(K))

DK(C’) EK(P’)

November 28, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 11/28/2016

Paul Krzyzanowski 5

Message Authentication

November 28, 2016 © 2013-2016 Paul Krzyzanowski 25

One-way functions

• Easy to compute in one direction

• Dif f icult to compute in the other

Examples:

 Factoring:

 pq = N EASY

 f ind p,q giv en N DIFFICULT

 Discrete Log:

 ab mod c = N EASY

 f ind b giv en a, c, N DIFFICULT

 26 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Example

Example with an 18 digit number

A = 289407349786637777

A2 = 83756614110525308948445338203501729

Middle square, B = 110525308948445338

Giv en A, it is easy to compute B

Giv en B, it is dif f icult to compute A

“Difficult” = no known short-cuts; requires an exhaustive search

27 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Message Integrity: Digital Signatures

Validate:

1. The creator (signer) of the content

2. The content has not been modif ied since it was signed

The content itself does not hav e to be encry pted

28 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Digital Signatures: Public Key Cryptography

Encry pting a message with a priv ate key is the same as

signing it!

November 28, 2016 © 2013-2016 Paul Krzyzanowski 29

Ea(P) DA(C)

Trusted

directory of
public keys

Alice Bob

Encrypt message with
Alice’s private key

Decrypt message with
Bob’s public key

But…

• Not quite what we want

– We don’t want to permute or hide the content

– We just want Bob to verify that the content came from Alice

• Moreov er...

– Public key cryptography is much slower than symmetric encryption

– What if Alice sent Bob a multi-GB movie?

November 28, 2016 © 2013-2016 Paul Krzyzanowski 30

CS 417 11/28/2016

Paul Krzyzanowski 6

Hash functions

• Cry ptographic hash f unction (also known as a digest)

– Input: arbitrary data

– Output: fixed-length bit string

• Properties

– One-way function

• Given H=hash(M), it should be difficult to compute M, given H

– Collision resistant

• Given H=hash(M), it should be difficult to find M’, such that H=hash(M’)

• For a hash of length L, a perfect hash would take 2 (L/2) attempts

– Efficient

• Computing a hash function should be computationally efficient

November 28, 2016 © 2013-2016 Paul Krzyzanowski 31

Popular hash functions

• SHA-2

– Designed by the NSA; published by NIST

– SHA-224, SHA-256, SHA-384, SHA-512

• e.g., Linux passwords used MD5 and now SHA-512

• SHA-3

– NIST standard as of 2015

• MD5

– 128 bits (not often used now since weaknesses were found)

• Hash f unctions deriv erd f rom ciphers:

– Blowfish (used for password hashing in OpenBSD)

– 3DES – used for old Linux password hashes

32 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Digital signatures using hash functions

• You:

– Create a hash of the message

– Encrypt the hash with your private key & send it with the message

• Recipient:

– Decrypts the encrypted hash using your public key

– Computes the hash of the received message

– Compares the decrypted hash with the message hash

– If they’re the same then the message has not been modified

November 28, 2016 © 2013-2016 Paul Krzyzanowski 33

Message Authentication Codes vs. Signatures

• Message Authentication Code (MAC)

– Hash of message encrypted with a symmetric key:
An intruder will not be able to replace the hash value

• Digital Signature

– Hash of message encrypted with the owner’s private key

• Alice encrypts the hash with her private key

• Bob validates it by decrypting it with her public key & comparing with
hash(M)

– Provides non-repudiation: recipient cannot change the encrypted hash

34 © 2013-2016 Paul Krzyzanowski November 28, 2016

Alice Bob

Alice generates a hash of the message

Digital signatures: public key cryptography

35

H(P)

November 28, 2016 © 2013-2016 Paul Krzyzanowski

H(P)

Alice Bob

Alice encrypts the hash with her private key
This is her signature.

Digital signatures: public key cryptography

36

S=Ea(H(P))

November 28, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 11/28/2016

Paul Krzyzanowski 7

H(P)

Alice Bob

Alice sends Bob the message & the encrypted hash

Digital signatures: public key cryptography

37

S=Ea(H(P))

November 28, 2016 © 2013-2016 Paul Krzyzanowski

H(P)

Alice Bob

1. Bob decrypts the hash using Alice’s public key
2. Bob computes the hash of the message sent by Alice

Digital signatures: public key cryptography

38

S=Ea(H(P))

H(P)

DA(S)

November 28, 2016 © 2013-2016 Paul Krzyzanowski

H(P)

Alice Bob

If the hashes match, the signature is valid
– the encrypted hash must have been generated by Alice

Digital signatures: public key cryptography

39

S=Ea(H(P))

H(P)

DA(S)

November 28, 2016 © 2013-2016 Paul Krzyzanowski

Alice Bob

Charles:
• Generates a hash of the message, H(P)

• Decrypts Alice’s signature with Alice’s public key
- Validates the signature: DA(S) ≟ H(P)

• Decrypts Bob’s signature with Bob’s public key

- Validates the signature: DB(S) ≟ H(P)

Digital signatures: multiple signers

40

H(P)

DA(S)

H(P)

S=Ea(H(P))

Charles

S’=Eb(H(P))

H(P)

DA(S)

DB(S’)

November 28, 2016 © 2013-2016 Paul Krzyzanowski

Covert AND authenticated messaging

If w e w ant to keep the message secret

– combine encry ption with a digital signature

Use a session key:

– Pick a random key, K, to encry pt the message with a

sy mmetric algorithm

– encry pt K with the public key of each recipient

– f or signing, encry pt the hash of the message with

sender’s priv ate key

November 28, 2016 © 2013-2016 Paul Krzyzanowski 41

H(P)

Alice

Alice generates a digital signature by
encrypting the message with her private key

Covert and authenticated messaging

42

S=Ea(H(M))

November 28, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 11/28/2016

Paul Krzyzanowski 8

H(P)

Alice

Alice picks a random key, K, and encrypts the message P
with it using a symmetric cipher

Covert and authenticated messaging

43

S=Ea(H(M))

C=EK(M)

November 28, 2016 © 2013-2016 Paul Krzyzanowski

H(P)

Alice

Alice encrypts the session key for each
recipient of this message using their public keys

Covert and authenticated messaging

44

S=Ea(H(M))

K K
C1=EB(K)

K

C2=EC(K)
for Charles

C=EK(M)

November 28, 2016 © 2013-2016 Paul Krzyzanowski

H(P)

Alice Bob

The aggregate message is sent to Bob & Charles

Covert and authenticated messaging

45

S=Ea(H(P))

K K
C1=EB(K)

K

C2=EC(K)

Message:

Signature:

Sender: Alice

Key for Bob: K

K Key for Charles:

Bob

Charles

November 28, 2016 © 2013-2016 Paul Krzyzanowski

Cryptographic toolbox

• Sy mmetric encry ption

• Public key encry ption

• One-way hash f unctions

• Random number generators

46 November 28, 2016 © 2013-2016 Paul Krzyzanowski

The End

November 28, 2016 47 © 2013-2016 Paul Krzyzanowski

