CS417

-
Distributed Systems
24. Cry ptographic Systems: An Brief Introduction
Paul Krzyzanowski
Ruigers University
Fall 2016
L
Novamoer 25, 2016 2015 2016 Pt Keyzarone

L Cryptography: what is it good for?

» Authentication
— determine origin of message

* Integrity
— verify that message has not been modified

* Nonrepudiation

+ Confidentiality
— others cannot read contents of the message

L

— sender should not be able to falsely deny that a message was sent

Noverber 28, 2016 © 20132016 Paul Krzyzanaveki

£ Terms: types of ciphers

» Restricted cipher
* Symmetric algorithm

* Public key algorithm

(&

Noverber 26, 2016 © 20132016 Paul Krzyzanowski

Paul Krzyzanowski

11/28/2016

L Cryptography = Security

[]

Cry ptography may be a component of a secure sy stem

Adding cry ptography may not make a sy stem secure

.

Noverber 28, 2016 © 20132016 Paul Krzyzanoveki

L Terms

Plaintext (cleartext) message P
Encry ption E(P)

Produces Ciphertext, C = E(P)
Decry ption, P = D(C)

Cipher = cry ptographic algorithm

November 28, 2016 © 20132016 Paul Krzyzanaveki

£ Restricted cipher

Secret algorithm

« If you know the algorithm, y ou can encry pt & decry pt
* Vulnerable to:

— Leaking

— Rewerse engineering

» Hard to validate its ef fectiveness (who will test it?)

* Not a viable approach!

November 28, 2016 © 20132016 Paul Krzyzanoweki

CS417 11/28/2016

N A
L Symmetric-key algorithm | L The power of 2 i
» Known algorithm but we introduce a secret parameter —the key Adding one extra bitto akey doubles the searchspace
X . Suppose it takes 1 second to search through all keys with a 2Gbit key
+ Same secret key, K, for encryption & decryption
key length number of keys search time
C=E«(P) 20 bits 1,048,576 1 second
P =Dk(C) 21 bits 2,097,152 2 seconds
32 bits 4.3 x 109 ~ 1 hour
» Examples: AES, 3DES, IDEA, RC5 56 bits 7.2 x 1016 2,178 years
64 bits 1.8 x 1019 > 557,000 years
* Key length 256 bi 1.2 x 1077 3.5 x 1083
x x
— Determines number of possible keys s = = years
« DES: 56-bit key: 256 = 7.2 x 1016 keys
+ AES-256: 256-bit key: 2256 = 1.1 x 1077 keys . .
_ Brute f attack: try all ke Distributed & custom hardware efforts typically allow us to search between 1 and
rute force -y ys >100 billion 64-bit (e.g., RC5) keys per second
\ y, \ y,
Novenber 25,2016 o 2015 2016 Paut Krzyzavores 7 November 28,2016 20152016 Paad Keyzancven 5
\ .
L Communicating w ith symmetric cryptography - L Key explosion J
* Both parties must agree on asecret key, K Each pair of users needs a separate key for secure
* Message is encry pted, sent, decry pted at other side communication
Alice Bob Alice Bob
= X
Dk(C Ka Kec
E x) 2 users: 1key
Charles 4 users: 6 keys
Alice 3 users: 3 keys
100 users: 4,950 keys
« Key distribution must be secret
. 1000 users: 399,500 keys
— otherwise messages can be decrypted
— users can be impersonated n users: EQ=0) keys
6 users: 15 keys 2
\ y, \ V,
Noverber 25,2016 e — 5 Noverber 25,2016 © 20157016 Pk Kryzanoveki o
- . . R -
£ Key distribution | L Diffie-Hellman Key Exchange J
Key distribution algorithm
— First algorithm to use public/priv ate “key s”
Secure key distribution is the biggest problem with - Not public key encry ption
sy mmetric cry ptography —Uses aone-way function
Based on dif ficulty of computing discrete logarithms in a
finite field compared with ease of calculating
exponentiation
Allows us to negotiate a secretcommon key without fear
of eavesdroppers
\ y, \ V,

Noverber 26, 2016 © 20132016 Paul Krzyzanouski 1 November 26, 2016 © 20132016 Paul Krzyzanoweki 2

Paul Krzyzanowski 2

CS417

~

L Diffie-Hellman Key Exchange

All arithmetic performed in a field of integers modulo some large number

« Both parties agree on a large prime number p and a number o <p

« Each party generates a public/private key pair

Private key for user i: X

Public key for user i Y;= a* mod p

(& J/

Noverber 28, 2016 © 20132016 Paul Krzyzanouski 13

L Diffie-Hellman exponential key exchange

* Alice has secret key Xa « Bob has secret key Xg
* Alice has public key Ya * Bob has public key Yg
* Alice computes « Bob computes

K =Y. * modp

K’ = (Alice’s public key) (Bob's private key) mod p

K =Y* mod p

L /

November 28, 2016 © 20122016 Paul Krzyzanowski 15

£ RSA Public Key Cryptography

* Ron Rivest, Adi Shamir, Leonard Adleman created a public
key encry ption algorithm in 1977

» Each user generates two keys:
— Private key (kept secret)
— Public key (can be shared with anyone)

« Algorithm based on the difficulty of factoring large numbers
— keys are functions of a pair of large (~300 digits) prime numbers

(& /

Noverber 26, 2016 © 20132016 Paul Krzyzanowski 17

Paul Krzyzanowski

1

1/28/2016

L Diffie-Hellman exponential key exchange

* Alice has secret key Xa * Bob has secret key Xg
« Alice has public key Ya * Bob has public key Yg

+ Alice computes

K =Y,*modp

K = (Bob’s public key) (Alice’s private key) mod p

.

Noverber 28, 2016 © 20132016 Paul Krzyzanoveki

L Diffie-Hellman exponential key exchange

)

* Alice has secret key Xa * Bob has secret key Xg
* Alice has public key Ya * Bob has public key Yg
* Alice computes * Bob computes
K =Y;* modp K =Y;> modp
+ expanding: expanding:
K =Y, modp K =Y, modp
= (a** mod p)** mod p =(a”* mod p)*> mod p
=a****modp =" modp
K=K’
K is a common _key, known only to Bob and Alice
\ J

L Public-key algorithm

Two related keys:
C=E«uP) P =DxAC) Ky is a public key
C'=ExP) P =Dx(C) | Keisaprivate key

Examples:
— RSA and Elliptic curve algorithms
— DSS (digital signature standard)

Key length
— Unlike symmetric cryptography, not every number is a valid key
— 3072-bit RSA = 256-bit elliptic curve = 128-bit symmetric cipher
— 15360-bit RSA = 521-hit elliptic curve = 256-bit symmetric cipher

(&

November 26, 2016 © 20132016 Paul Kizyzanoveki

CS417

L Communication with public key algorithms

[]

Different keys for encry pting and decry pting
— Noneed toworry about key distribution
— Share public keys
— Keep private keys secret

(& J/

Noverber 28, 2016 © 20132016 P aul Kzyzanoveki

L Hybrid Cryptosystems

+ Session key: randomly-generated key for one communication session
» Useapublic key algorithm to send the session key

* Use asymmetric algorithmto encrypt data with the session key

Public key algorithms are almost never used to encrypt messages
— MUCH slower; wulnerable to chosen-plaintext attacks

— RSA-2048 approximately 55x slower to encrypt and 2,000x slower to
decrypt than AES-256

L /

Noverber 28, 2016 © 20122016 Paul Krzyzanowski 21

£ Communication with a hybrid cryptosystem

Alice Bob

(— Bob’s public key: Kg
] —— <o

By — p~8

encrypt message using a decrypt message using a
symmetric algorithm and symmetric algorithm and
key K key K

Noverber 26, 2016 © 20132016 Paul Krzyzanouski 2

Paul Krzyzanowski

(& /

11/28/2016

L Communication with public key algorithms

Alice Bob

Alice’s public key: Ka —)
(— Bob’s public key: Kg

(Bob's private key: Kp)

- B

decrypt message with
Bob’s private key

(Alice’s private key: Kj)

encrypt message with
Bob’s public key

D.(C) [< A e
—Va /o
El El
decrypt message with encrypt message with
Alice’s private key Alice’s public key
i\ J
November 28, 2016 © 20132016 Paud Krzyzanonskd)

L Communication with a hybrid cryptosystem J

Alice Bob

(— Bob's public key: Kg

Pick a random session key, K

Eo(K ?
=43
K = Dp(Eg(K))

encrypt session key with
Bob'’s public key Bob decrypts K with
his private key

Now Bob knows the secret sessionkey, K

November 28, 2016 © 20132016 Paul Krzyzanaveki 2

L Communication with a hybrid cryptosystem J

Alice Bob

—
[Bw] ————> «-DiE)

e® » ol

gy « /<-g
7
decrypt message using a encrypt message using a
symmetric algorithm and symmetric algorithm and
key K key K
. /

November 26, 2016 © 20132016 Paul Krzyzanousk 2

CS417 11/28/2016

s N - N
L One-way functions i
+ Easy to compute in one direction
« Difficultto compute in the other
Message Authentication Examples:
Factoring:
pg=N EASY
find p,qgivenN DIFFICULT
DiscreteLog:
a°modc=N EASY
findbgivena, ¢, N DIFFICULT
| J | J/
Novenber 25,2016 © 20132016 Pt Kzyzarcnehs = November 28,2016 20157016 Pk Keyzanvekt %
\ . - - -
L Example | L Message Integrity: Digital Signatures J
Example with an 18 digit number Validate:
A = 289407349786637777 1. The creator (signer) of the content
AZ = 837566141105253089484453 38203501729 2. The content has not been modified since it was signed
Middle square, B = 110525308948445338
The content itself does not hav e to be encry pted
Given A, it is easy to compute B
Given B, it is difficult to compute A
“Difficult” = no known short-cuts; requires an exhaustive search
\ y, \ V,
- - - - M
£ Digital Signatures: Public Key Cryptography _ L But... J
Encry pting a message with a private key is the same as » Not quite what we want
signing it! — We don't want to permute or hide the content
Trusted — We just want Bob to verify that the content came from Alice
directory of
public keys
* Moreover...
Al — Public key cryptography is much slower than symmetric encryption
‘e — What if Alice sent Bob a mult-GB movie?
Ea(P
oA
Encrypt message with Decrypt message with
Alice’s private key Bob’s public key
\ y, \ V,

Noverber 26, 2016 © 20132016 Paul Krzyzanowski 2 November 28, 2016 © 20132016 Paul Krzyzanoweki E)

Paul Krzyzanowski 5

CS417 11/28/2016

A N
L Hash functions | L Popular hash functions i
+ Cry ptographic hash function (also known as a digest) * SHA-2
— Input: arbitrary data — Designed by the NSA; published by NIST
— Output: fixed-length bit string — SHA-224, SHA-256, SHA-384, SHA-512
. Properties * e.g., Linux passwords used MD5 and now SHA512
o ‘ . * SHA-3
— One-way function _
- Given H=hash(M), it should be difficut to compute M, given H NIST standard as of 2015
Collision resistant " MDS
+ Given H=hash(M), it should be difficult to find M, such that H=hash(M’) ~ 128 bits (ot often used now since weaknesses were found
« Fora hash of length L, a perfect hash would take 2(L2)attempts + Hash functions deriv erd from ciphers:
_ Efficient — Blowfish (used for password hashing in OpenBSD)
+ Computing a hash function should be computationally efficient — 3DES —used for old Linux password hashes
\ y, \ /
Noverier 25,2016 © 20152015 P aut Kyzanov el Noverioe: 28,2016 2015 2016 Pauk Krzyzavore =
- - . - .) - . -
L Digital signatures using hash functions | L Message Authentication Codes vs. SlgnaturesJ
* You: * Message Authentication Code (MAC)
— Create a hash of the message — Hash of message encrypted with a symmetric key:
— Encrypt the hash with your private key & send it with the message An intruder will not be able to replace the hash value
« Recipient: * Digital Signature
— Decrypts the encrypted hash using your public key — Hash of message encrypted with the owner’s private key
— Computes the hash of the received message « Alice encrypts the hash with her private key
_ i « Bob validates it by decrypting itwith her public key & comparing with
Compares the decrypted hash with the message hash ' hash(M)
- Iftheyre the same then the message has not been modified — Provides non-repudiation: recipient cannot change the encrypted hash
\ y, \ /
Noverier 25, 2016 e — = Noveroer 28, 2016 B — =
- - . . M - - - .
£ Digital signatures: public key cryptography L Digital signatures: public key cryptography J
Alice Bob Alice Bob
H(P HP)
ls Ea(H(P))
A
. Alice encrypts the hash with her private key
Alice generates a hash of the message This is her signature.
\ y, \ /
Noverier 25, 2016 © 20132015 et Kiyzanow = Noverioer 28, 2016 © 20132016 Ptk Krzyzaroveia e

Paul Krzyzanowski 6

CS417

L Digital signatures: public key cryptography

Alice Bob

. ‘s Ea(H(P)))y

A

Alice sends Bob the message & the encrypted hash
i\

[]

Noverber 28, 2016 © 20132016 Paul Krzyzanoveki

L Digital signatures: public key cryptography

Alice Bob

H(P)
== =
;s Ea(H(P)) =) =
Xl -

If the hashes match, the signature is valid

L — the encrypted hash must have been generated by Alice

Noverber 28, 2016 © 20122016 Paul Krzyzanowski

£ Covert AND authenticated messaging

If w e w antto keep the message secret
— combine encry ption with a digital signature

Use a sessionkey:

— Pick a random key, K, to encry pt the message with a
sy mmetric algorithm

— encry pt Kwith the public key of each recipient

— forsigning, encry pt the hash of the message with
sender’s private key

(&

Noverber 26, 2016 © 20132016 Paul Krzyzanouski

Paul Krzyzanowski

11/28/2016

L Digital signatures: public key cryptography

Alice
HP
g =
¢S=EE(H(P»—)

1. Bob decrypts the hash using Alice’s public key
2. Bob computes the hash of the message sentby Alice

.

Noverber 28, 2016 © 20132016 Paul Krzyzanoveki E3

L Digital signatures: multiple signers

Alice Bob

”-“’LE] ﬂ»@
ls =Eq(H(P)) == -

Da(S),

=

S'=Ex(H(P))
t‘ay

Charles

H(P)

Da(S)
Dg(S’)

Charles:

* Generates a hash of the message, H(P)

« Decrypts Alice’s signature with Alice’s public key
- Validates the signature: Da(S) = H(P)

« Decrypts Bob’s signature with Bob's public key
- Validates the signature: Dg(S) = H(P)

L

November 28, 2016 © 20132016 Paul Krzyzanaveki 0

L Covert and authenticated messaging

Alice

VYHP)
=E——Ea
S=Eq(H(M)

Alice generates a digital signature by
encrypting the message with her private key

(&

)

November 26, 2016 © 20132016 Paul Kizyzanoveki a2

CS417

. .)
£ Covert and authenticated messaging |
Alice
I
C=EM [
YHP)
—
S=Ea(H(M)
Alice picks a random key, K, and encrypts the message P
with it using a symmetric cipher
|\ - J/
~

L Covert and authenticated messaging

Alice Bob
.—)l Sender: Alice
Mes: ge
-~
T 7| Pl
I Lo _—
S EAHP) > SQnam,e. \
i Key for Bob: . Charles
E]—) -— 5
C1=Ep(K) ~ Key for Charles:
7 -
-
Co=Ec(K)
The aggregate message is sent to Bob & Charles
L /
November 28, 2016 © 20132016 Paui Kzyzaronska 3
g ™\
The End
(& /

Noverber 26, 2016 © 20132016 Paul Krzyzanouski

Paul Krzyzanowski

11/28/2016

L Covert and authenticated messaging

Alice

VYHE)
E—)
S=Ea(H(M)

Mo @

C1=Eg(K)
for Charles
Co=Ec(K)

Alice encrypts the session key for each
recipient of this message using their public keys

.

L]

Noverber 28, 2016 © 20132016 Paul Krzyzanoveki

L Cryptographic toolbox

* Symmetric encry ption
* Public key encry ption
* One-way hash functions

+ Random number generators

L

November 28, 2016 © 20132016 Paul Krzyzanaveki

