CS417 11/28/2016

L Security Goals

[]

 Authentication
— Ensure that users, machines, programs, and resources are properly
identified
Distributed Systems * Integrity
26. Authentication — Verify that data has not been compromised: deleted, modified, added
» Confidentiality
— Prevent unauthorized access to data
* Av ailability
— Ensure that the system is accessible

Paul Krzyzanowsk

(& J/ (& J

Noverber 28, 2016 © 20132016 Paul Krzyzanouski 1 November 28, 2016 © 20132016 Paul Krzyzanoveki 2

L Local authentication example: login J

Get authentication info [9t logn name, password -
login_process Validate Compare given password
with stored password

uid = root

L Authentication

» For auser (or process):
— Establish & verify identity
— Then decide whether to allow access to resources (= authorization)

* For afile or data stream:

— Validate that the integrity of the data; that it has not been modified setuid(user_id) Good? Then change user
by anyone other than the author setgid(group_id) ID and group 1D of process

— E.g., digital signature

login process

uid = user's ID . Replace the login process
exec(login_shell) with the shell process

L / L J

Noverber 28, 2016 © 20132016 Paul Krzyzanaveki 3 November 28, 2016 © 20132016 Paul Krzyzanaveki 4

~
£ Identification vs. Authentication i L Versus Authorization J
* Identification: Authorization defines access control
—Who are you? Once we know a user’s identity:
—User name, account number, ... — Allow/disallow request
— Operating systems
« Authentication: « Enforce access to resources and databasedon user's credentials
—Proveit! — Network services usually runon another machine
— Password, PIN, encry pt nonce, ... « Network server may not know of the user
« Application takes responsibility
« May contact an authorization server
— Trusted third party that will grant credentials
— Kerberos ticket granting service
— RADIUS (centralized authentication/author izatior)
— OAuth service
(& / (& J
Noverber 28, 2016 © 20132016 Paul Krzyzanonski B November 26, 2016 © 20132016 Paud Krzyzanonsks o

Paul Krzyzanowski 1

CS417 11/28/2016

A N
L Security | L Authentication i
Three factors:
—something you have key, card
« Can be stolen
—something y ou know passwords
« Can be guessed, shared, stolen
)
The Three A's . N
—something you are biometrics
Authentication « Usually needs hardware, can be copied (sometimes)
Authorization « Once copied, you're stuck
Accounting
(+Auditing)
\ y, \ /
Noverier 25,2016 © 20152015 P aut Kyzanov 7 Noverioe: 28,2016 2015 2016 Pauk Krzyzavore s
- . .) - .
Multi-Factor Authentication | L Authentication: PAP .
Factors may be combined Password Authentication Protocol
- ATM machine: 2-factor authentication
* ATM card something you have
* PIN something you know login, password name:password
> database
. . L client server
— Password + code delivered via SMS: 2-factor authentication <€ OK
» Password something you know
« Code validates that you possess your phone
you p your p « Unencrypted, reusable passwords
« Insecure on an open network
. . «+ Also, password file must be protected from open access
Tw o passw ords # Tw o-factor authentication password P op
— But administrators can still see everyone’s passwords
\ y, \ /
Noverier 25, 2016 e — B Noveroer 28, 2016 B — o
~
£ PAP: Reusable passwords | L Common Passwords J
Problem #1: Open access to the password file Adobe security breach (November 2013)
What if the password file isn't sufficiently protected and an intruder gets ~ 152 million Adcbe customer re<.:ords - with .encrypled p_asswords
hold of it? All passwords are now compromised! — Adobe encrypted passwords with asymmetric key algorithm
. X . — ... and used the same key to encrypt every password!
Even if atrusted admin sees your password, this might also be your
password on other systems. ;uu 26 Adobe Passwords N
Frequency Password Frequency Password
1 1911938 123456 14 61453 1234
: . 2 446,162 123456789 15 56,744 adobel
SO|Lm0n' 3 345834 password 16 54651 macromedia
. . 4 211659 dobe123 17 48,850 y
Store ahaSh Of the paSSV\Drd ina ﬂle 5 201580 i224:67ﬂ 18 47,142 |In:::;u
— Given afile, you don’t get the passwords 6 130832 qwerty. 19 44,281 aaaaaa
— Have to resort to a dictionary or brute-force attack ! ﬁ;:gi 1213141516]1 ;g :ijgg Eingé
— Example, passwords hashedwith SHA-512 hashes (SHA-2) 9 83411 photoshop 22 37407 666666
10 82,694 123123 23 35325 sunshine
11 76910 1234567890 24 34,963 123321
12 76,186 000000 25 33452 letmein
L 13 70791 abc123 26 32549 monke)
\ y, \ /
Noverier 25, 2016 © 20132015 et Kiyzanow fh Noverioer 28, 2016 © 20132016 Ptk Krzyzaroveia =

Paul Krzyzanowski 2

CS417

L What is a dictionary attack?

* Supposeyou got access to alist of hashed passwords

« Brute-force, exhaustive search: try every combination
— Letters (A-Z, a-z), numbers (0-9), symbols (! @#3$%...)
— Assume 30 symbols + 52 letters + 10 digits = 92 characters
— Test all passwords up to length 8
— Combinations = 928 + 927+ 926 + 925+ 924+ 923 + 922 + 921=5.189 x 1055
— If we test 1 billion passwords per second: =60 days

» But some passwords are more likely than others
— 1,991,938 Adobe customers used a password = “123456"
— 345,834 users used a password = “password”

« Dictionary attack
— Test lists of common passwords, dictionary words, names
— Add common substitutions, prefixes, and suffixes

Noverber 28, 2016 © 20132016 Paul Krzyzanouski 13

L PAP: Reusable passwords

Problem #2: Network sniffing

Passwords can be stolen by observing a user’s session in person or
ower a network

— snoop on telnet, ftp, rlogin, rsh sessions

— Trojan horse

— social engineering

— brute-force or dictionary attacks

Solutions:
(1) Use one-time passwords

(2) Use an encrypted communication channel

November 28, 2016 © 20132016 Paul Krzyzanovski 15

£ S/key authentication

* One-time password scheme
* Produces a limited number of authentication sessions

* Relies on one-way functions

(&

Noverber 26, 2016 © 20132016 Paul Krzyzanowski 17

Paul Krzyzanowski

11/28/2016

L What is salt?

L]

« How to speed up a dictionary attack
— Create a table of precomputed hashes
— Now we just search a table
Example: SHA-512 hash of “password” =

SQNZUTWKTrgkQZ F+0G 1hi5AI3Qmzvv0bX ge5TH Bai 7mAs dd 4XI1 27A SbRt
9fEyavWiemOQP9IB8IT hf+rDKy8hg==

« Salt = random string (typically up to 16 characters)
— Concatenated with the password
— Stored with the password file (it's not secret)
— Even if you know the salt, you cannot use precomputed hashes to search
for a password (because the salt is prefixed)
Example: SHA-512 hash of “am$7b22QLpassword”, salt = “am$7b22QL"

ntIxjDMnueMW ig4dtWoMba gu ucW6xV 6¢cH J+7yNrGv doyFFRV b/LLgS0 1/pXS
8XZ+ur7zPO2yn88xcliUPQj7xg==

+ You will not have hash(“am$7b22QL pass wor d’)

Noverber 28, 2016 © 20132016 Paul Krzyzanoveki 14

(One-time passwords 1
g L

L

Use a different password each time
— If an intruder captures the transaction, it won't work next time

Three forms
1. Sequence-based: password = f(previous password)
2. Time-based: password = f(time, secret)

3. Challenge-based: f(challenge, secret)

November 28, 2016 © 20132016 Paul Krzyzanaveki 16

(S/key authentication 1
g J

(&

Authenticate Alice for 100 logins
* pick random number, R

+ using a one-way function, f(x):

x1=1(R)
X2 = f(x1) =f(f(R))

x3 = f(x2) =f(f(f(R))) Give this list

to Alice
X100 = f(xee) = F(...F(F(F(R)))...)

* then compute:
X101 = f(X100) = f(...F(F(F(R)))...)

November 28, 2016 © 20132016 Paul Krzyzanoweki 18

CS417 11/28/2016

N N
L S/key authentication | L S/key authentication i
Authenticate Alice for 100 logins Alice presents the last number on her list:
Alice to host: { “alice”, X100 }
store x101 in a password file or database record Host computes f(x100) and compares it with the v alue in
associated with Alice the database
if (X100 provided by alice) = passwd(“alice”)
- replace xio1 in db with X100 provided by alice
alice: Xor return success
else
fail
next time: Alice presents Xgg
if someone sees xio there is no way to generate Xoo.
\ / \ J
Novamoer 25, 2016 © 20132016 Pa Kizyzanovea T November 28,2016 20157016 Pk Keyzanvekt »
- -) . .
Authentication: CHAP | L CHAP authentication .
Challenge-Handshake Authentication Protocol
Alice network host
= nonce)
< (:ha]lem‘,]e(-l “alice” alice look up alice’s
< — key K
. hash(challenge, secret),
client 7 S generate random
(OK. R =1K.C) C challenge number C
Has shared secret Has shared secret R’
R=f(K, C)
The challenge is a nonce (random bits). Lo come R=R’?
We create a hash of the nonce and the secret. Y
An intruder does not have the secret and cannot do this! an eavesdropper does not see K
\ / \ J
Novemoer 25, 2016 © 20157016 Pk Kryzanovekt 21 November 25, 2016 © 20157016 Pk Kryzanoveki =
- . M
£ Authentication: MS-CHAP | L SecurlD card J
: . . Username:
Microsoft’s Challenge-Handshake Authentication Protocol aul
3 CIREe -
=3
4 Password:
,_Session ID, Challenge: 16-byte random #
< N |-
. hash(challenge, d, ‘7@ ‘, E_\g
client scuord Enalonge nashed pessword sener = ; PIN + passcode from card
P password_challenge: 16-byte random # Something you know
< OK Passcode changes every 60 seconds Something you have
Has user's password Has user's password
[8 1. Enter PIN
. 2. Press¢
The same as CHAP —we're just hashing more things in the response :5:\“5:;"[; B 3. Card computes password
GID 4. Read password & enter Password:
\ / \ J
Novamoer 25 2015 © 20152016 Pt Kzyzarows > Noverber 25, 2016 20152018 Pad Kryzarone 2

Paul Krzyzanowski 4

CS417

~
L SecurlD card |
* Proprietary device from RSA
— SASL mechanism: RFC 2808
» Two-factor authentication based on:
— Shared secret key (seed) <: Something you have
« stored on authentication card
— Shared personal ID —PIN <:I Something you know
« known by user
\ J
Noverber 25,2016 © 20152015 P aut Kyzanov =
L Man-in-the-Middle Attacks |
Password systems are winerable to man-in-the-middle attacks
— Attacker acts as the server
Hi Bob, I'm Alice
—
A
Alice Mike Bob
\. J
Noverber 25, 2016 © 20132016 Pauk Krzyzanowski 3
£ Man-in-the-Middle Attacks |
Password systems are winerable to man-in-the-middle attacks
— Attacker acts as the server
Wth? WWOM?
]
A
Alice Mike Bob
\ J

Noverber 26, 2016 © 20132016 Paul Krzyzanowski

Paul Krzyzanowski

11/28/2016

L SecurlD (SASL) authentication: senver side

» Look up user’'s PIN and seed associated with the token

+ Get the time of day
— Server stores relative accuracy of clock in that SecurlD card
— historic pattern of drift

— adds or subtracts offset to determine what the clock chip on the
SecurlD card believes is its current time

» Passcode is a cry ptographic hash of seed, PIN, and time
— server computes f (seed, PIN, time)

» Server compares results with data sent by client

.

Noverber 28, 2016 © 20132016 Paul Krzyzanoveki

L Man-in-the-Middle Attacks

Password systems are winerable to man-in-the-middle attacks
— Attacker acts as the server

Hi Bob, I'm Alice Hi Bob, I'm Alice

=

Alice Mike Bob

L

November 28, 2016 © 20132016 Paul Krzyzanaveki

L Man-in-the-Middle Attacks

Password systems are winerable to man-in-the-middle attacks
— Attacker acts as the server

It's 123456 It's 123456

Alice Mike Bob

(&

November 26, 2016 © 20132016 Paul Kizyzanoveki

CS417

L Man-in-the-Middle Attacks

Password systems are winerable to man-in-the-middle attacks
— Attacker acts as the server

So long, sucker! Welcome, Alice!
A

Alice Mike Bob

L

[]

Noverber 28, 2016 © 20132016 Paul Krzyzanoveki

L Guarding against man-in-the-middle

» Use a covert communication channel
— The intruder won't have the key
— Can’t see the contents of any messages
— But you can't send the key over that channel!

» Use signed messages
— Signed message = { message, encrypted hash of message }
— Both parties can reject unauthenticated messages
— The intruder cannot modify the messages
« Signatures will fail (they will need to know how to encrypt the hash)

L

November 28, 2016 © 20122016 Paul Krzyzanowski

£ Wide-mouth frog

Alice m—————— T rent

| “alice” , E(Ta, “bob”, K) |

session key
destination
b timestamp — prevent replay attacks

sender

« Arbitrated protocol — Trent (3rd party) has all the key s

* Symmetric encry ption used for transmitting a session key

(&

Noverber 26, 2016 © 20132016 Paul Krzyzanowski

Paul Krzyzanowski

11/28/2016

N N N
L Man-in-the-Middle Attacks i
Password systems are winerable to man-in-the-middle attacks
— Attacker acts as the server
Huh? Download my files
S
<
Alice Mike Bob
\ _ /
s N
Combined authentication
and key exchange
\ ' /

L Wide-mouth frog

AliCe ——— T rent

| “alice”, Ex(Ta, “bob”, K) |

b EStiNALION

sender
Trent:

« Validates timestamp (this is anew message)
« Extracts destination (“bob”)
« Looks up Bob’s key

(&

T— session key

+ Looks up key comresponding to sender (“alice”)
« Decrypts remainder of message using Alice’s key

b timestamp — prevent replay attacks

November 26, 2016 © 20132016 Paul Kizyzanoveki

CS417

L Wide-mouth frog

Alice Trent Bob

| “alice” , Ex(Ta, “bob”, K) | | Ex(Tr “alice’, K)

session key
source
timestamp — prevent replay attacks

Tent

Creates a new message

New timestamp

Identify source of the session key
Encrypt the message for Bob
Send to Bob

L

[]

Noverber 28, 2016 © 20132016 Paul Krzyzanoveki

L Wide-mouth frog

| Ex(M)

Since Bob and Alice have the session key,
they can communicate securely using the key

L

Alice Bob

Noverber 28, 2016 © 20122016 Paul Krzyzanowski

£ Kerberos

» Authentication service dev eloped by MIT
— project Athena 1983-1988

* Trusted third party
* Sy mmetric cry ptography

» Passwords not sentin clear text
— assumes only the network can be compromised

(&

Noverber 26, 2016 © 20132016 Paul Krzyzanouski

Paul Krzyzanowski

11/28/2016

L Wide-mouth frog

L]

Alice Trent Bob

| “alice” , Ea(Ta, “bob”, K) | | Ex(Tr, “alice’, K)

session key
source
timestamp — prevent replay attacks

Bob:
- Decrypts message
« Validates timestamp
« Extracts sender (“alice”)
« Extracts session key, K

(& J

Noverber 28, 2016 © 20132016 Paul Krzyzanoveki B

Kerberos

L J

November 28, 2016 © 20132016 Paul Krzyzanaveki a1

L Kerberos J

Users and services authenticate themselv es to each other

To access a service:
— user presents a ticket issued by the Kerberos authentication server
— service examines the ticket to verify the identity of the user

Kerberos is a trusted third party
— Knows all (users and services) passwords
— Responsible for
« Authentication: validating anidentity
« Authorization: deciding whether someone can access a senice
« Key exchange: giving both parties an encryption key (securely)

(& J

November 26, 2016 © 20132016 Paul Kizyzanoveki P

CS417

L Kerberos

» User Alice wants to communicate with a service Bob

» Both Alice and Bob have keys

» Step 1:
— Alice authenticates with Kerberos server
« Gets session key and sealed envelope
» Step 2:
— Alice gives Bob a session key (securely)
— Convinces Bob that she also got the session key from Kerberos

L

[]

Noverber 28, 2016 © 20132016 Paul Kizyzanouski a4

L Send key

Alice Bob

Alice encrypts a timestamp with
session key

{"Alice”, S}g, Ts

sealed envelope

Bob decrypts envelope:

« Envelope was created by
Kerberos on request from Alice

+ Gets session key

Decrypts time stamp
« Validates time window
+ Prevent replay attacks

AN J

-

Noverber 28, 2016 © 20122016 Paul Krzyzanowski 46

£ Kerberos key usage

» Every time auser wants to access aservice

— User’s password (key) must be used to decode the message from
Kerberos

* We can av oid this by caching the password in a file
— Not a good idea

» Another way : create a temporary password
— We can cache this temporary password
— Similar to asession key for Kerberos —to get access to other services
— Split Kerberos server into
Authentication Server + Ticket Granting Server

(&

Noverber 26, 2016 © 20132016 Paul Krzyzanouski 48

Paul Krzyzanowski

11/28/2016

L Authenticate, get permission

.

L]

Alice Authentication Server (AS)

“l want to talk to Bob” M \

If Alice is alowed to talk to Bob,

generate session key, S

St p—

TICKET
/ sealed envelope

(“Nice”, S}

«—

Alice decrypts this:
« Gets ID of “Bob’s server”

{“Bob's server”

* Gets session key
+ Knows message came fromAS

@ (Alice can't read this!)

J

Noverber 28, 2016 © 20132016 Paul Krzyzanoveki 45

L Authenticate recipient of message J

L

Alice Bob

4 o)

Encrypt Alice’s timestamp in retum
message

{“Bob’s Server”, T}s

Alice validates timestamp

{Messages}s
Alice & Bob communicate

K by encrypting data with S j

November 28, 2016 © 20132016 Paul Krzyzanaveki a7

A

Ticket Granting Seniice (TGS) J

TGS +AS = KDC (Kerberos Key Distribution Center)

* Authentication Server
—Authenticates user, gives a session key to access the TGS
—Before accessing any service, user requests aticket to contact TGS

* Ticket Granting Server
— Anytime a user wants a service, requestaticket from TGS
— Reply is encrypted with the TGS session key

* TGS works like a temporary 1D

November 26, 2016 © 20132016 Paul Krzyzanousk 49

CS417

L Using Kerberos

[]

$ kinit
Password: enter password

ask AS for permission (session key) to access TGS

{“TGS", S}A < Session key
{"Alice”, S}ras <€ TGS Ticket

Compute key (A) from password to decry pt session key S
and get TGS ID.

Alice gets:

You now have a ticket to access the Ticket Granting Service

Noverber 28, 2016 © 20132016 Paul Krzyzanoveki 50

Public Key Authentication

L /

November 28, 2016 © 20122016 Paul Krzyzanowski 54

£ Public key authentication

Bob:
1. Look up “alice” in a database of public keys
2. Decrypt the message from Alice using Alice’s public key
3. Ifthe resultis S, then Bob is convinced he’s talking with Alice

For mutual authentication, Alice has to present Bob with a
nonce that Bob will encry pt with his private key and return

(& /

Noverber 26, 2016

© 20132016 Paul Krzyzanouski 5%

Paul Krzyzanowski

11/28/2016

L Using Kerberos

$ rlogin somehost
rlogin uses the TGS Ticket to request aticket for the rlogin service
on somehost

Alice sends sessionkey, S, to TGS
rlogin TGS

{"Alice”, S}rcs,Ts r—

Alice receives session key for flogin senvice & ficket to pass to rlogin service

<« {"rlogin@somehost’, S}s |m=m

. ~
— (Nice')y |
\

for rlogin

on somehost

S’ = session ke

ticket for rlogin server

L]

J

Noverber 28, 2016 © 20132016 Paul Krzyzanoveki

51

L Public key authentication

Demonstrate w e can encryptor decrypt anonce
This shows we have the right key

« Alice wants to authenticate herself to Bob:
A random

« Bob: generates nonce, S bunch of bits

— Sends it to Alice
« Alice: encrypts S with her private key (signs it)
— Sends result to Bob

November 28, 2016 © 20132016 Paul Krzyzanaveki

L Public key authentication

» Public key authentication relies on binding identity to a
public key
— How do you know it really is Alice’s public key?
* One option:
get keys from atrusted source
* Problem: requires alway s going to the source
— cannot pass keys around

+ Another option: sign the public key
— Contents cannot be modified
— digital certificate

November 26, 2016 © 20132016 Paul Kizyzanoveki

CS417

L X.509 Certificates

Issuer Valdiy
oistrgusted | (rom-10)
Name

version | serial# | algoritim

Subject

. Public key |
Distinguished name lgoritm & ke

X.509 v3 Digital Certificate

I1SO introduced a set of authentication protocols

X.509: Structure for public key certificates:
Issuer = Certification Authority (CA)

Signature
Algorithm

Signature
(signed by CA)

_ \ Name, organization, locality, state, country,etc. Y,
Novenber 25,2016 © 20132016 Pt Kzyzarcnehs =
- A
X.509 certificates |
When you get a certificate
— Verify its signature:
« hash contents of certificate data
« Decrypt CA's signature with CA's public key
Obtain CA's public key (certificate) from trusted source
Certificates prevent someone from using a phony public key
to masquerade as another person
...if you trust the CA
\ y,
Noverber 25,2016 © 20157016 Pt Kryzanoveki ®
3 ™)
SSL/TLS
\ y,

Noverber 26, 2016 © 20132016 Paul Krzyzanowski

Paul Krzyzanowski

11/28/2016

L Reminder: What'’s a digital signature? i
Hash of a message encry pted with the signer’s priv ate key :
Alice Bob
Bre [
| s=Ete) —> T = =
J

.

Noverber 28, 2016

© 20132016 Paul Krzyzanoveki

L Built-in trusted root certificates in iOS 9 J

ATustnQualol

TstQual oL

- ATstQualo2

+ AAA Certficate Sewices

+ Actalis Authenication Root CA

+ AddTust Class 1CA Root

+ AddTrust Extemal CA Root

+ AddTust Public CA Root

+ AddTrust Qualified CA Root

+ AdminRootCA

+ AdminCACD-TOL

+ AffimiTnust Commercial

+ AffimiTnust Neworking

+ AffimiTrust Premium ECC

+ AffimiTnust Premium

+ ANFGlobal Root CA

+ Apple Root CA-G2

+ Apple Root CA-G3

+ Apple Rool CA

+ Apple Rool Ceriicate Authoty

+ Application CA G2

+ ApplicationCA

+ ApplicationCA2 Root

+ Autoridad de Ceriicacion Fimaprofesional
CIFA62634068.

+ Autoridad de CetficacionRaiz del Estado
Venezolano

+ Baltimore CyberTrust. Root

+ Belgium Root CA2

L

+ Buypass Class 2CA 1
+ Buypass Class 2Root CA

+ Buypass Class 3CA 1

+ Buypass Class 3Root CA

+ CADisigRootR1

+ CADisigRoolR2

- caDisig

- Cerigna

+ Cetinomis - Autorité Racine

+ Cetinomis -Root CA

+ cenSIGN ROOTCA

- Cem CA

+ Cerum Trusted Network CA 2

+ Cerum Trusted Network CA

- Chambers of Commerce Rool -2008
+ Chambers of Commerce Root

+ CiscoRoot A 2048

+ Class 2Primay CA

+ Common Policy

+ COMODO Cetiication Authorty

+ ComsignCA

+ Comsign Global Root CA

- ComSign Secured CA

+ DTRUSTRool Class 3CA 22009

+ DTRUSTRoot Class 3CA 2EV 2009
+ Deutsche Telekom Root CA 2

- DigiCen Assured ID Root CA

+ DigiCen Assured ID Root G2

- DigiCe Assured ID Root G3

+ DigiCert Global Root CA
+ DigCer Global Root G2

+ DigiCert Global Root G3

+ DigiCert High Assurance EV Root CA

+ DigCer Tusted Root G4

* DODROGKCA 2

- DSTACES CAXG

- DSTROOCA X3

+ DSTROOCA X4

+ E-Tuga Cerification Authority

+ EBG Elektronik Sefifika Hizmet Sagiayicisi
+ Echowon Root CA2

+ EE Cerification Cerre Root CA

+ EntustRoot Cerification Authority - EC1

- Entrust Root Certfication Authoriy - G2

+ Entust Root Certfication Authority

+ Entustret Cerification Authorty (2048)

+ Entustnet Cerification Authority (2048)

+ ePKI Root Cetification Authority

+ Federal Common Policy CA

+ GeoTnust Global CA

+ GeoTnust Primary Cerification Authority - G2
+ GeoTnust Primary Cetification Authorty -G3
+ GeoTnust Primary Cerification Authority

+ Global Charbersign Root -2008

+ Global Charbersign Root

+ GlobalSign Root CA

November 28, 2016

© 20132016 Paul Krzyzanaveki

L Transport Layer Security (TLS) J

« Sits on top of TCP/IP

« aka Secure Socket Layer (SSL), which is an older protocol

« Goal: provide an encrypted and possibly authenticated
communication channel
— Provides authentication via RSA and X.509 certificates
— Encryption of communication sessionvia a symmetric cipher

« Hybrid cryptosystem: (usually, but also supports Diffie-Hellman)
— Public key for authentication
— Symmetric for data communication

« Enables TCP seniices to engage in secure, authenticated transfers
— http, telnet, ntp, ftp, smtp, ...

November 26, 2016

© 20132016 Paul Krzyzanoweki

10

CS417 11/28/2016

~
L Transport Layer Security (TLS) L Transport Layer Security (TLS)
e o
9 9
client server client server
hello(version, cipher suiies) -~ Client authenticates serv er (optional)
7 Client nonce N
? t with s te k
ncrypt with server's private key.
ﬁlo(&:hosen version, chosen cipher suites) < Enonce) e mm ==
Decryptnonce with server’s public key
, certificate (or public key)
Y
(hello done Serv er authenticates client (optional)
L Server nonce
<
certificate (only for clientauthenticationy Encrypt with client's private ke mm s ? E(nonce) -~
>
Decryptnonce with server’s public key 7
1. Establish protocol, version, cipher suite
Get server certificate (or public key) 2. Authenticate: unidirectiona or mutual (optional)
[details depend on chosen cipher]
i\ J \§ J
Noveber 28, 2016 © 20132016 P aud Kzyzanonsia & November 26, 2016 © 20132016 P auk Kzyzanonsi 3
L Transport Layer Security (TLS) | L Transport Layer Security (TLS) J
client sener client senver
Pick a session key
Encrypt with server's public key -i E(session key) ~ » Essdata) >
Becryptwith server's private key o~
Encrypt & decryptwith session key and symmetric algorithm (e.g., RC4 or AES)
3. Establish a session key for symmetric cryptography 4. Exchange data (symmetric encryption)
L / L J
November 28, 2016 © 20132016 Paul Kryzaronska B November 26, 2016 © 20132016 Paud Krzyzaronska &

£ Transport Layer Security (TLS) i L SSL Keys ... more details J
» Optimizing reconnections: abbreviated handshake » SSL really uses four session key s
— Goal: cache symmetric keys for clients — Ec — encryption key for messages from Client to. Server
— Mc —MAC encryption key for messages from Client to Server
— Server sends a session ID during initial hello message — Es —encryption key for messages from Server to Client
« Client & server save negotiated parameters and master secret (key) — Ms— MAC encryption key for messages from Server to Client
— Client can use the session ID when reconnecting « They are all derived from the random key selected by the
« Clients and servers i
client
. Hash(data) emrymid with Mc
oo Data + MAC encryptedwith Ec
\ y, \ /
Noverier 25, 2016 © 20132015 et Kiyzanow ® Noverioer 28, 2016 © 20132016 Ptk Krzyzaroveia @

Paul Krzyzanowski 11

CS417 11/28/2016

L Senice Authorization

L]

* Youwant an app to access your data at some service
— E.g., access your Google calendar data

OAuth 2.0

 But you want to:
— Notreveal your password to the app
— Restrict the data and operations available to the app
— Be able torewoke the app’s access to the data

(& J/ (& J

Noverber 28, 2016 © 20132016 Paul Krzyzanouski o November 28, 2016 © 20132016 Paul Krzyzanoveki n

o)
L OAuth 2.0: Open Authorization | L OAuth setup J
» OAuth: framework for service authorization » OAuth is based on
— Allows you to authorize one website (consumer) to access data from — Getting a token from the service provider & presenting it each time an
another website (provider) — in a restricted manner application accesses an AP at the service
— Designed initially for web services = URL redirection
— Examples: — JSON data encapsulation
+ Allow the Moo photo printing service to get photos fromyour Flickr account
« Allow the NY Times to tweet a message fromyour Twitter account . Register a service
* OpenlID Connect — Service provider (e.g., Flickr):
— Remote identification: use one login for multiple sites + Gets data about your application (name, creator, URL)

— Encapsulated within OAuth 2.0 protocol « Assigns the application (consumer) an ID & a secret

« Presents list of authorization URLs and scopes (access types)

L / L J

November 28, 2016 © 20132016 Paul Krzyzanovski 72 November 28, 2016 © 20132016 Paul Krzyzanaveki 7

£ OAuth Entities L How does authorization take place? J

« Application needs aRequest Token from the Service

Authorizaion Service (e.g., moo.com needs an access token from flickr.com)
server provider

— Application redirects user to Service Provider
+ Request contains: client ID, client secret, scope (list of requested APIs)
« User may need to authenticate at that provider

flickr

Service Provider N
{app ID,secre} » User authorizes the requested access

* Service Provider redirects back to consumer with a onetime-use authorization code

— Application now has the Authorization Code

+ The previous redirect passed the Authorization Code as part of the HTTP request—
therefore not encrypted

{app D, secre)

— Application exchanges Authorizaiion Codefor Access Token
T « The legitimate app uses HTTPS (encrypted channel) & sends its secret
Application « The application now talks securely & directly to the Service Provider

« Service Provider returns Access Token

mencom

‘You want moo.com to access your photos on flickr
— Application makes API requests to Senvice Provider using the Access Tken

(& / (& J

Noverber 26, 2016 © 20132016 Paul Krzyzanowski 74 November 28, 2016 © 20132016 Paul Krzyzanoweki 3

Paul Krzyzanowski 12

CS417

L Key Points

Google accounts

« You still may need to log into the
Provider's OAuth service when
redirected

0O6 You approve the specific access
that you are granting

~ Goagla OAulh 2.0 Prygrenrst wesdd ik 10

@ =

« The Service Provider validates
the requested access when it
gets atoken from the Consumer

Play with it at the OAuth 2.0 Playground:
https://developers.google.com/oauthplayground/

L

Noverber 28, 2016 © 20132016 Paul Krzyzanoveki %

11/28/2016

L OpenlD Connect

« Designed to solve the problem of -
— Having to get an ID per senice (website)

— Managing passwords per site

« Decentralized mechanism for single sign-on
— Access different senices (sites) using the same identity
« Simplify account creation at new sites
— User chooses which OpenID provider to use
+ OpenlD does not specify authentication protocol — up to provider
— Website never sees your password

+ OpenID Connect is a standard but not the only solution
— Used by Google, Microsoft, Amazon Web Senices, PayPal, Salesforce, ...

— Facebook Connect — popular alternative saution
(similar in operation but websites can share info with Facebook, offer friend
access, or make suggestions to users based on Facebook data)

L

Noverber 28, 2016 © 20132016 Paul Krzyzanaveki 78

£ Cryptographic toolbox

* Sy mmetric encry ption
* Public key encry ption
* One-way hash functions

* Random number generators
— Used for nonces and session keys

(&

Noverber 26, 2016 © 20132016 Paul Krzyzanowski)

Paul Krzyzanowski

.

Identity Federation: OpenID Connect

Noverber 28, 2016 © 20132016 Paul Krzyzanoveki

L OpenlD Connect Authentication

.

.

OAuth requests that you specify a “scope”
— List of access methods that the app needs permission to use

To enable user identification
— Specify “openid” as a requested scope

Send request to server (identity provider)
— Server requests user ID and handles authentication

Get back an access token
— If authentication is successfu, the token contains:
+ user ID
+ approved scopes
expiration same as with OAuth requests for authorization
« etc.

November 28, 2016 © 20132016 Paul Krzyzanaveki

Examples

.

.

Key exchange
— Public key cryptography

Key exchange + secure communication
— Random # + Public key + symmetric cryptography

Authentication
— Nonce (random #) + encryption

Message authentication codes
— Hashes

Digital signature
— Hash + encryption with private key

November 28, 2016 © 20132016 Paul Krzyzanoweki

13

CS417 11/28/2016

The End

Paul Krzyzanowski 14

