
CS 417 11/28/2016

Paul Krzyzanowski 1

Distributed Systems
26. Authentication

Paul Krzyzanowski

Rutgers University

Fall 2016

1 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Security Goals

• Authentication

– Ensure that users, machines, programs, and resources are properly
identified

• Integrity

– Verify that data has not been compromised: deleted, modified, added

• Conf identiality

– Prevent unauthorized access to data

• Av ailability

– Ensure that the system is accessible

2 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Authentication

• For a user (or process):

– Establish & verify identity

– Then decide whether to allow access to resources (= authorization)

• For a f ile or data stream:

– Validate that the integrity of the data; that it has not been modified
by anyone other than the author

– E.g., digital signature

3 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Local authentication example: login

Get authentication info

Validate

setuid(user_id)
setgid(group_id)

exec(login_shell)

login process

uid = root

login process

uid = user’s ID

get login name, password

Compare given password

with stored password

Good? Then change user

ID and group ID of process

Replace the login process

with the shell process

Identification

Authentication

Access

Control

4 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Identification vs. Authentication

• Identif ication:

– Who are y ou?

– User name, account number, …

• Authentication:

– Prov e it!

– Password, PIN, encry pt nonce, …

5 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Versus Authorization

Authorization defines access control

Once we know a user’s identity:

– Allow/disallow request

– Operating systems

• Enforce access to resources and data based on user’s credentials

– Network services usually run on another machine

• Network server may not know of the user

• Application takes responsibility

• May contact an authorization server

– Trusted third party that will grant credentials

– Kerberos ticket granting service

– RADIUS (centralized authentication/author ization)

– OAuth service

6 November 28, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 11/28/2016

Paul Krzyzanowski 2

Security

The Three A’s
Authentication

Authorization

Accounting

(+ Auditing)

7 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Authentication

Three factors:

– something y ou hav e key, card

• Can be stolen

– something y ou know passwords

• Can be guessed, shared, stolen

– something y ou are biometrics

• Usually needs hardware, can be copied (sometimes)

• Once copied, you’re stuck

8 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Multi-Factor Authentication

Factors may be combined

– ATM machine: 2-f actor authentication

• ATM card something you have

• PIN something you know

– Password + code deliv ered v ia SMS: 2-f actor authentication

• Password something you know

• Code validates that you possess your phone

Tw o passw ords ≠ Tw o-factor authentication

9 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Authentication: PAP

Password Authentication Protocol

login, password

OK client server

• Unencrypted, reusable passwords

• Insecure on an open network

• Also, password file must be protected from open access

– But administrators can still see everyone’s passwords

10

name:password

database

November 28, 2016 © 2013-2016 Paul Krzyzanowski

PAP: Reusable passwords

Problem #1: Open access to the password file

What if the password file isn’t sufficiently protected and an intruder gets
hold of it? All passwords are now compromised!

Even if a trusted admin sees your password, this might also be your
password on other systems.

Solution:

Store a hash of the password in a file

– Given a file, you don’t get the passwords

– Have to resort to a dictionary or brute-force attack

– Example, passwords hashed with SHA-512 hashes (SHA-2)

11 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Common Passwords

Adobe security breach (November 2013)

– 152 million Adobe customer records … with encrypted passwords

– Adobe encrypted passwords with a symmetric key algorithm

– … and used the same key to encrypt every password!

November 28, 2016 © 2013-2016 Paul Krzyzanowski 12

Frequency Password

1 1,911,938 123456

2 446,162 123456789

3 345,834 password

4 211,659 adobe123

5 201,580 12345678

6 130,832 qwerty

7 124,253 1234567

8 113,884 111111

9 83,411 photoshop

10 82,694 123123

11 76,910 1234567890

12 76,186 000000

13 70,791 abc123

Frequency Password

14 61,453 1234

15 56,744 adobe1

16 54,651 macromedia

17 48,850 azerty

18 47,142 iloveyou

19 44,281 aaaaaa

20 43,670 654321

21 43,497 12345

22 37,407 666666

23 35,325 sunshine

24 34,963 123321

25 33,452 letmein

26 32,549 monkey

Top 26 Adobe Passwords

CS 417 11/28/2016

Paul Krzyzanowski 3

What is a dictionary attack?

• Suppose you got access to a list of hashed passwords

• Brute-force, exhaustive search: try every combination

– Letters (A-Z, a-z), numbers (0-9), symbols (! @#$%...)

– Assume 30 symbols + 52 letters + 10 digits = 92 characters

– Test all passwords up to length 8

– Combinations = 928 + 927 + 926 + 925 + 924 + 923 + 922 + 921 = 5.189 × 1015

– If we test 1 billion passwords per second: ≈ 60 days

• But some passwords are more likely than others

– 1,991,938 Adobe customers used a password = “123456”

– 345,834 users used a password = “password”

• Dictionary attack

– Test lists of common passwords, dictionary words, names

– Add common substitutions, prefixes, and suffixes

November 28, 2016 © 2013-2016 Paul Krzyzanowski 13

What is salt?

• How to speed up a dictionary attack

– Create a table of precomputed hashes

– Now we just search a table

• Salt = random string (typically up to 16 characters)

– Concatenated with the password

– Stored with the password file (it’s not secret)

– Even if you know the salt, you cannot use precomputed hashes to search

for a password (because the salt is prefixed)

• You will not have precomputed hash(“am$7b22QLpass wor d”)

November 28, 2016 © 2013-2016 Paul Krzyzanowski 14

Example: SHA-512 hash of “password” =

sQnzu7wkTrgkQZF+0G1hi5AI3Qmzvv0bX gc5THBqi7mAs dd4Xll27A SbRt
9fEyavWi6m0QP9B8lThf+rDKy8hg==

Example: SHA-512 hash of “am$7b22QLpasswor d”, salt = “am$7b22QL”:

ntIxjDMnueMWig4dtWoMbaguucW6xV 6cHJ+7yNrGv doyFFRV b/LLqS01/pXS
8xZ+ur7zPO2yn88xcIiUPQj7xg==

PAP: Reusable passwords

Problem #2: Network sniffing

Passwords can be stolen by observing a user’s session in person or

over a network:

– snoop on telnet, ftp, rlogin, rsh sessions

– Trojan horse

– social engineering

– brute-force or dictionary attacks

Solutions:

(1) Use one-time passwords

(2) Use an encrypted communication channel

15 November 28, 2016 © 2013-2016 Paul Krzyzanowski

One-time passwords

Use a dif f erent password each time

– If an intruder captures the transaction, it won’t work next time

Three f orms

1. Sequence-based: password = f(previous password)

2. Time-based: password = f(time, secret)

3. Challenge-based: f(challenge, secret)

16 November 28, 2016 © 2013-2016 Paul Krzyzanowski

S/key authentication

• One-time password scheme

• Produces a limited number of authentication sessions

• Relies on one-way f unctions

17 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Authenticate Alice f or 100 logins

• pick random number, R

• using a one-way f unction, f (x):

 x1 = f (R)

 x2 = f (x1) = f (f (R))

 x3 = f (x2) = f (f (f(R)))

 … …

 x100 = f (x99) = f (…f (f(f(R)))…)

• then compute:

 x101 = f (x100) = f (…f (f(f(R)))…)

S/key authentication

Give this list
to Alice

18 November 28, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 11/28/2016

Paul Krzyzanowski 4

S/key authentication

Authenticate Alice f or 100 logins

store x101 in a password f ile or database record

associated with Alice

alice: x101

19 November 28, 2016 © 2013-2016 Paul Krzyzanowski

S/key authentication

Alice presents the last number on her list:

 Alice to host: { “alice”, x100 }

Host computes f (x100) and compares it with the v alue in

the database

 if (x100 provided by alice) = passwd(“alice”)

 replace x101 in db with x100 provided by alice
 return success
 else
 f ail

next time: Alice presents x99

if someone sees x100 there is no way to generate x99.

20 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Authentication: CHAP

Challenge-Handshake Authentication Protocol

challenge

hash(challenge, secret)

OK

client server

Has shared secret Has shared secret

The challenge is a nonce (random bits).

We create a hash of the nonce and the secret.

An intruder does not have the secret and cannot do this!

21

= nonce

November 28, 2016 © 2013-2016 Paul Krzyzanowski

CHAP authentication

Alice network host

“alice”
“alice” look up alice’s

key, K

generate random
challenge number C C

R ’ = f(K,C)

R ’
R = f(K, C)

R = R ’ ?
“welcome”

an eavesdropper does not see K

22 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Authentication: MS-CHAP

Microsof t’s Challenge-Handshake Authentication Protocol

Session ID, Challenge: 16-byte random #

user name, hash(challenge, password,

password_challenge, hashed_password)

OK

client server
password_challenge: 16-byte random #

The same as CHAP – we’re just hashing more things in the response

Has user’s password Has user’s password

23 November 28, 2016 © 2013-2016 Paul Krzyzanowski

SecurID card

Username:

paul

Password:

1234032848

PIN passcode from card +

Something you know
Something you have

1. Enter PIN
2. Press ◊
3. Card computes password

4. Read password & enter Password:

354982

Passcode changes every 60 seconds

24 November 28, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 11/28/2016

Paul Krzyzanowski 5

SecurID card

• Proprietary dev ice f rom RSA

– SASL mechanism: RFC 2808

• Two-f actor authentication based on:

– Shared secret key (seed)

• stored on authentication card

– Shared personal ID – PIN

• known by user

25 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Something you have

Something you know

SecurID (SASL) authentication: server side

• Look up user’s PIN and seed associated with the token

• Get the time of day

– Server stores relative accuracy of clock in that SecurID card

– historic pattern of drift

– adds or subtracts offset to determine what the clock chip on the
SecurID card believes is its current time

• Passcode is a cry ptographic hash of seed, PIN, and time

– server computes f (seed, PIN, time)

• Serv er compares results with data sent by client

26 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Man-in-the-Middle Attacks

Password systems are vulnerable to man-in-the-middle attacks

– Attacker acts as the server

28

Alice Mike Bob

Hi Bob, I’m Alice

November 28, 2016 © 2013-2016 Paul Krzyzanowski

Man-in-the-Middle Attacks

Password systems are vulnerable to man-in-the-middle attacks

– Attacker acts as the server

29

Alice Mike Bob

Hi Bob, I’m Alice Hi Bob, I’m Alice

November 28, 2016 © 2013-2016 Paul Krzyzanowski

Man-in-the-Middle Attacks

Password systems are vulnerable to man-in-the-middle attacks

– Attacker acts as the server

30

Alice Mike Bob

What’s your password? What’s your password?

November 28, 2016 © 2013-2016 Paul Krzyzanowski

Man-in-the-Middle Attacks

Password systems are vulnerable to man-in-the-middle attacks

– Attacker acts as the server

31

Alice Mike Bob

It’s 123456 It’s 123456

November 28, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 11/28/2016

Paul Krzyzanowski 6

Man-in-the-Middle Attacks

Password systems are vulnerable to man-in-the-middle attacks

– Attacker acts as the server

32

Alice Mike Bob

So long, sucker! Welcome, Alice!

November 28, 2016 © 2013-2016 Paul Krzyzanowski

Man-in-the-Middle Attacks

Password systems are vulnerable to man-in-the-middle attacks

– Attacker acts as the server

33

Alice Mike Bob

Huh? Download my files

November 28, 2016 © 2013-2016 Paul Krzyzanowski

Guarding against man-in-the-middle

• Use a cov ert communication channel

– The intruder won’t have the key

– Can’t see the contents of any messages

– But you can’t send the key over that channel!

• Use signed messages

– Signed message = { message, encrypted hash of message }

– Both parties can reject unauthenticated messages

– The intruder cannot modify the messages

• Signatures will fail (they will need to know how to encrypt the hash)

November 28, 2016 © 2013-2016 Paul Krzyzanowski 34

Combined authentication
and key exchange

35 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Wide-mouth frog

• Arbitrated protocol – Trent (3rd party) has all the key s

• Sy mmetric encry ption used f or transmitting a session key

36

“alice” , EA(TA, “bob”, K)

Alice Trent

session key

destination

timestamp – prevent replay attacks

sender

November 28, 2016 © 2013-2016 Paul Krzyzanowski

Wide-mouth frog

• Looks up key corresponding to sender (“alice”)

• Decrypts remainder of message using Alice’s key

• Validates timestamp (this is a new message)

• Extracts destination (“bob”)

• Looks up Bob’s key

“alice” , EA(TA, “bob”, K)

Alice Trent

session key

destination

timestamp – prevent replay attacks

sender
Trent:

37 November 28, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 11/28/2016

Paul Krzyzanowski 7

Wide-mouth frog

• Creates a new message

• New timestamp

• Identify source of the session key

• Encrypt the message for Bob

• Send to Bob

“alice” , EA(TA, “bob”, K)

Alice Trent

session key

source

timestamp – prevent replay attacks

Trent:

EB(TT, “alice”, K)

Bob

38 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Wide-mouth frog

• Decrypts message

• Validates timestamp

• Extracts sender (“alice”)

• Extracts session key, K

“alice” , EA(TA, “bob”, K)

Alice Trent

session key

source

timestamp – prevent replay attacks

Bob:

EB(TT, “alice”, K)

Bob

39 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Wide-mouth frog

Since Bob and Alice have the session key,
they can communicate securely using the key

Alice

EK(M)

Bob

40 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Kerberos

41 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Kerberos

• Authentication serv ice dev eloped by MIT

– project Athena 1983-1988

• Trusted third party

• Sy mmetric cry ptography

• Passwords not sent in clear text

– assumes only the network can be compromised

42 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Kerberos

Users and serv ices authenticate themselv es to each other

To access a serv ice:

– user presents a ticket issued by the Kerberos authentication server

– service examines the ticket to verify the identity of the user

Kerberos is a trusted third party

– Knows all (users and services) passwords

– Responsible for

• Authentication: validating an identity

• Authorization: deciding whether someone can access a service

• Key exchange: giving both parties an encryption key (securely)

43 November 28, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 11/28/2016

Paul Krzyzanowski 8

Kerberos

• User Alice wants to communicate with a serv ice Bob

• Both Alice and Bob hav e key s

• Step 1:

– Alice authenticates with Kerberos server

• Gets session key and sealed envelope

• Step 2:

– Alice gives Bob a session key (securely)

– Convinces Bob that she also got the session key from Kerberos

44 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Authenticate, get permission

 “I want to talk to Bob”

Alice decrypts this:

• Gets ID of “Bob’s server”

• Gets session key

• Knows message came from AS

 eh? (Alice can’t read this!)

If Alice is allowed to talk to Bob,

generate session key, S

{“Bob’s server”, S}A

Alice Authentication Server (AS)

{“Alice”, S}B

TICKET
sealed envelope

45 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Send key

Alice encrypts a timestamp with
session key

Bob decrypts envelope:
• Envelope was created by

Kerberos on request from Alice
• Gets session key

Decrypts time stamp

• Validates time window
• Prevent replay attacks

{“Alice”, S}B, TS

Alice Bob

sealed envelope

46 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Authenticate recipient of message

Alice validates timestamp

Encrypt Alice’s timestamp in return
message

Alice Bob

{“Bob’s Server”, T}S

{Messages}S

Alice & Bob communicate
by encrypting data with S

47 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Kerberos key usage

• Ev ery time a user wants to access a serv ice

– User’s password (key) must be used to decode the message from
Kerberos

• We can av oid this by caching the password in a f ile

– Not a good idea

• Another way : create a temporary password

– We can cache this temporary password

– Similar to a session key for Kerberos – to get access to other services

– Split Kerberos server into

 Authentication Server + Ticket Granting Server

48 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Ticket Granting Service (TGS)

TGS + AS = KDC (Kerberos Key Distribution Center)

• Authentication Serv er

–Authenticates user, gives a session key to access the TGS

–Before accessing any service, user requests a ticket to contact TGS

• Ticket Granting Serv er

– Anytime a user wants a service, request a ticket from TGS

– Reply is encrypted with the TGS session key

• TGS works like a temporary ID

49 November 28, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 11/28/2016

Paul Krzyzanowski 9

Using Kerberos

$ kinit

Password: enter password

ask AS f or permission (session key) to access TGS

Alice gets:

Compute key (A) f rom password to decry pt session key S

and get TGS ID.

You now have a ticket to access the Ticket Granting Service

{“TGS”, S}A

{“Alice”, S}TGS

50

TGS Ticket

Session key

November 28, 2016 © 2013-2016 Paul Krzyzanowski

Using Kerberos

$ rlogin somehost

 rlogin uses the TGS Ticket to request a ticket for the rlogin service

on somehost

{“rlogin@somehost”, S’}S

{“Alice”, S’}R

{“Alice”, S}TGS,TS

rlogin TGS

S’ = session key
for rlogin

ticket for rlogin server
on somehost

Alice sends session key, S, to TGS

Alice receives session key for rlogin service & ticket to pass to rlogin service

51 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Public Key Authentication

54 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Public key authentication

• Alice wants to authenticate herself to Bob:

• Bob: generates nonce, S

– Sends it to Alice

• Alice: encrypts S with her private key (signs it)

– Sends result to Bob

Demonstrate w e can encrypt or decrypt a nonce
This shows we have the right key

A random
bunch of bits

55 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Public key authentication

Bob:

1. Look up “alice” in a database of public keys

2. Decrypt the message from Alice using Alice’s public key

3. If the result is S, then Bob is convinced he’s talking with Alice

For mutual authentication, Alice has to present Bob with a

nonce that Bob will encry pt with his priv ate key and return

56 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Public key authentication

• Public key authentication relies on binding identity to a

public key

– How do you know it really is Alice’s public key?

• One option:

 get key s f rom a trusted source

• Problem: requires alway s going to the source

– cannot pass keys around

• Another option: sign the public key

– Contents cannot be modified

– digital certificate

57 November 28, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 11/28/2016

Paul Krzyzanowski 10

X.509 v3 Digital Certificate

Certificate data Signature

X.509 Certificates

ISO introduced a set of authentication protocols

X.509: Structure f or public key certif icates:

Subject

Distinguished name
Public key

(algorithm & key)

version serial # algorithm
Issuer

Distinguished

Name

Validity

(from-to)

Signature

Algorithm

Signature

(signed by CA)

Issuer = Certification Authority (CA)

Name, organization, locality, state, country, etc.

58 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Reminder: What’s a digital signature?

Hash of a message encry pted with the signer’s priv ate key

November 28, 2016 © 2013-2016 Paul Krzyzanowski 59

Alice Bob

H(P)

DA(S)

H(P)

S=Ea(H(P))
=?

X.509 certificates

When y ou get a certif icate

– Verify its signature:

• hash contents of certificate data

• Decrypt CA’s signature with CA’s public key

Obtain CA’s public key (certif icate) from trusted source

Certif icates prev ent someone f rom using a phony public key

to masquerade as another person

…if you trust the CA

60 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Built-in trusted root certificates in iOS 9
• A-Trust-nQual-01

• A-Trust-Qual-01

• A-Trust-Qual-02

• AAA Certificate Services

• Actalis Authentication Root CA

• AddTrust Class 1 CA Root

• AddTrust External CA Root

• AddTrust Public CA Root

• AddTrust Qualified CA Root

• Admin-Root-CA

• AdminCA-CD-T01

• AffirmTrust Commercial

• AffirmTrust Networking

• AffirmTrust Premium ECC

• AffirmTrust Premium

• ANF Global Root CA

• Apple Root CA - G2

• Apple Root CA - G3

• Apple Root CA

• Apple Root Certificate Authority

• Application CA G2

• ApplicationCA

• ApplicationCA2 Root

• Autoridad de Certificacion Firmaprofesional

CIF A62634068

• Autoridad de Certificacion Raiz del Estado

Venezolano

• Baltimore CyberTrust Root

• Belgium Root CA2

61

• Buypass Class 2 CA 1

• Buypass Class 2 Root CA

• Buypass Class 3 CA 1

• Buypass Class 3 Root CA

• CA Disig Root R1

• CA Disig Root R2

• CA Disig

• Certigna

• Certinomis - Autorité Racine

• Certinomis - Root CA

• certSIGN ROOT CA

• Certum CA

• Certum Trusted Network CA 2

• Certum Trusted Network CA

• Chambers of Commerce Root - 2008

• Chambers of Commerce Root

• Cisco Root CA 2048

• Class 2 Primary CA

• Common Policy

• COMODO Certification Authority

• ComSign CA

• ComSign Global Root CA

• ComSign Secured CA

• D-TRUST Root Class 3 CA 2 2009

• D-TRUST Root Class 3 CA 2 EV 2009

• Deutsche Telekom Root CA 2

• DigiCert Assured ID Root CA

• DigiCert Assured ID Root G2

• DigiCert Assured ID Root G3

• DigiCert Global Root CA

• DigiCert Global Root G2

• DigiCert Global Root G3

• DigiCert High Assurance EV Root CA

• DigiCert Trusted Root G4

• DoD Root CA 2

• DST ACES CA X6

• DST Root CA X3

• DST Root CA X4

• E-Tugra Certification Authority

• EBG Elektronik Sertifika Hizmet Sağlayıcısı

• Echoworx Root CA2

• EE Certification Centre Root CA

• Entrust Root Certification Authority - EC1

• Entrust Root Certification Authority - G2

• Entrust Root Certification Authority

• Entrust.net Certification Authority (2048)

• Entrust.net Certification Authority (2048)

• ePKI Root Certification Authority

• Federal Common Policy CA

• GeoTrust Global CA

• GeoTrust Primary Certification Authority - G2

• GeoTrust Primary Certification Authority - G3

• GeoTrust Primary Certification Authority

• Global Chambersign Root - 2008

• Global Chambersign Root

• GlobalSign Root CA

Partial lis t from
https://support.apple.com/en-us/HT205205

November 28, 2016 © 2013-2016 Paul Krzyzanowski

SSL/TLS

62 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Transport Layer Security (TLS)

• aka Secure Socket Layer (SSL), which is an older protocol

• Sits on top of TCP/IP

• Goal: provide an encrypted and possibly authenticated

communication channel

– Provides authentication via RSA and X.509 certificates

– Encryption of communication session via a symmetric cipher

• Hybrid cryptosystem: (usually, but also supports Diffie-Hellman)

– Public key for authentication

– Symmetric for data communication

• Enables TCP services to engage in secure, authenticated transfers

– http, telnet, ntp, ftp, smtp, …

63 November 28, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 11/28/2016

Paul Krzyzanowski 11

Transport Layer Security (TLS)

client server

hello(version, cipher suites)

hello(chosen version, chosen cipher suites)

certificate (or public key)

hello done

1. Establish protocol, version, cipher suite
Get server certificate (or public key)

 [details depend on chosen cipher]

certificate (only for client authentication)

64 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Transport Layer Security (TLS)

client server

Client nonce

E(nonce)

2. Authenticate: unidirectional or mutual (optional)

Client authenticates serv er (optional)

Encrypt with server’s private key

Decrypt nonce with server’s public key

Server nonce

E(nonce)

Serv er authenticates client (optional)

Encrypt with c lient’s private key

Decrypt nonce with server’s public key

65 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Transport Layer Security (TLS)

client server

E(session key)

3. Establish a session key for symmetric cryptography

Pick a session key

Encrypt with server’s public key

Decrypt with server’s private key

66 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Transport Layer Security (TLS)

client server

ES(data)

4. Exchange data (symmetric encryption)

Encrypt & decrypt with session key and symmetric algorithm (e.g., RC4 or AES)

67 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Transport Layer Security (TLS)

• Optimizing reconnections: abbreviated handshake

– Goal: cache symmetric keys for clients

– Server sends a session ID during initial hello message

• Client & server save negotiated parameters and master secret (key)

– Client can use the session ID when reconnecting

• Clients and servers

68 November 28, 2016 © 2013-2016 Paul Krzyzanowski

SSL Keys … more details

• SSL really uses f our session key s

– EC – encryption key for messages from Client to Server

– MC – MAC encryption key for messages from Client to Server

– ES – encryption key for messages from Server to Client

– MS – MAC encryption key for messages from Server to Client

• They are all deriv ed f rom the random key selected by the

client

© 2013-2016 Paul Krzyzanowski 69

Type Version Length Data MAC

Hash(data) encrypted with MC

Data + MAC encrypted with EC

November 28, 2016

You don’t need to

remember this!

CS 417 11/28/2016

Paul Krzyzanowski 12

OAuth 2.0

70 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Service Authorization

• You want an app to access y our data at some serv ice

– E.g., access your Google calendar data

• But y ou want to:

– Not reveal your password to the app

– Restrict the data and operations available to the app

– Be able to revoke the app’s access to the data

November 28, 2016 © 2013-2016 Paul Krzyzanowski 71

OAuth 2.0: Open Authorization

• OAuth: f ramework f or serv ice authorization

– Allows you to authorize one website (consumer) to access data from
another website (provider) – in a restricted manner

– Designed initially for web services

– Examples:

• Allow the Moo photo printing service to get photos from your Flickr account

• Allow the NY Times to tweet a message from your Tw itter account

• OpenID Connect

– Remote identification: use one login for multiple sites

– Encapsulated within OAuth 2.0 protocol

72 November 28, 2016 © 2013-2016 Paul Krzyzanowski

OAuth setup

• OAuth is based on

– Getting a token from the service provider & presenting it each time an
application accesses an API at the service

– URL redirection

– JSON data encapsulation

• Register a serv ice

– Service provider (e.g., Flickr):

• Gets data about your application (name, creator, URL)

• Assigns the application (consumer) an ID & a secret

• Presents list of authorization URLs and scopes (access types)

73 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Authorization
server

Service
provider

OAuth Entities

Service Provider

Application

You

You want moo.com to access your photos on flickr

74 November 28, 2016 © 2013-2016 Paul Krzyzanowski

{app ID, secret}

{app ID, secret}

How does authorization take place?

• Application needs a Request Token from the Service
(e.g., moo.com needs an access token from flickr.com)

– Application redirects user to Service Provider

• Request contains: client ID, client secret, scope (list of requested APIs)

• User may need to authenticate at that provider

• User authorizes the requested access

• Service Provider redirects back to consumer with a one-time-use authorization code

– Application now has the Authorization Code

• The previous redirect passed the Authorization Code as part of the HTTP request –

therefore not encrypted

– Application exchanges Authorization Code for Access Token

• The legitimate app uses HTTPS (encrypted channel) & sends its secret

• The application now talks securely & directly to the Service Provider

• Service Provider returns Access Token

– Application makes API requests to Service Provider using the Access Token

75 November 28, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 11/28/2016

Paul Krzyzanowski 13

Key Points

• You still may need to log into the
Provider’s OAuth service when
redirected

• You approve the specific access

that you are granting

• The Service Provider validates
the requested access when it
gets a token from the Consumer

76

Play with it at the OAuth 2.0 Playground:
https://developers.google.com/oauthplayground/

November 28, 2016 © 2013-2016 Paul Krzyzanowski

Identity Federation: OpenID Connect

77 November 28, 2016 © 2013-2016 Paul Krzyzanowski

OpenID Connect

• Designed to solve the problem of

– Having to get an ID per service (website)

– Managing passwords per site

• Decentralized mechanism for single sign-on

– Access different services (sites) using the same identity

• Simplify account creation at new sites

– User chooses which OpenID provider to use

• OpenID does not specify authentication protocol – up to provider

– Website never sees your password

• OpenID Connect is a standard but not the only solution

– Used by Google, Microsoft, Amazon Web Services, PayPal, Salesforce, …

– Facebook Connect – popular alternative solution
(similar in operation but websites can share info with Facebook, offer friend

access, or make suggestions to users based on Facebook data)

 78 November 28, 2016 © 2013-2016 Paul Krzyzanowski

OpenID Connect Authentication

• OAuth requests that you specify a “scope”

– List of access methods that the app needs permission to use

• To enable user identification

– Specify “openid” as a requested scope

• Send request to server (identity provider)

– Server requests user ID and handles authentication

• Get back an access token

– If authentication is successful, the token contains:

• user ID

• approved scopes

• expiration

• etc.

November 28, 2016 © 2013-2016 Paul Krzyzanowski 79

same as with OAuth requests for authorization

Cryptographic toolbox

• Sy mmetric encry ption

• Public key encry ption

• One-way hash f unctions

• Random number generators

– Used for nonces and session keys

80 November 28, 2016 © 2013-2016 Paul Krzyzanowski

Examples

• Key exchange

– Public key cryptography

• Key exchange + secure communication

– Random # + Public key + symmetric cryptography

• Authentication

– Nonce (random #) + encryption

• Message authentication codes

– Hashes

• Digital signature

– Hash + encryption with private key

81 November 28, 2016 © 2013-2016 Paul Krzyzanowski

CS 417 11/28/2016

Paul Krzyzanowski 14

The End

November 28, 2016 95 © 2013-2016 Paul Krzyzanowski

