Distributed Systems
26. Distributed Caching & Some Peer-to-Peer Systems

Paul Krzyzanowski
Rutgers University

Fall 2018

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski

[Caching

* Purpose of a cache
— Temporary storage to increase data access speeds
— Increase effective bandwidth by caching most frequently used data

« Store raw data from slow devices
— Memory cache on CPUs
— Buffer cache in operating system
— Chubby file data and metadata
— GFS master caches all metadata in memory

« Store computed data

— Avoid the need to look the same thing up again
* Results of database queries or file searches
« Spark RDDs in memory

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski

Distributed In-Memory Caching

A network memory-based caching service
— Shared by many — typically used by front-end services

Stores frequently-used (key, value) data
— Old data gets evicted

General purpose
— Not tied to a specific back-end service

Not transparent (usually)
— Because it's a general-purpose service, the programmer gets involved

User-facing
Service

If not foyp,
d
then Iook here

December 3, 2018 © 2017-2018 Paul Krzyzanowski

! Deployment Models

.

« Separate caching server

— One or more computers whose sole purpose is to provide a caching service

s

-

User-facing Service

~

-

s

User-facing Service

_

-

User-facing Service

J

* Or share cache memory among servers
— Take advantage of free memory from lightly-loaded nodes

s

| User-facing Service

| User-facing Service

| User-facing Service

December 3, 2018

© 2017-2018 Paul Krzyzanowski 4

[What would you use it for?

« Cache user session state on web application servers
— No need to keep user coming back to the same computer

« Cache user preferences, shopping carts, etc.
— Avoid repeated database lookups

« Cache rendered HTML pages

— Avoid re-processing server-side includes, JSP/ASP/PHP code

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski

Example: memcached

Free & open source distributed memory caching

Used by MEMCACHED

— Facebook, Wikipedia, Flickr, Twitter, YouTube, memcached.org
Digg, Bebo, WordPress, Craigslist, ...

Protocol
— Binary & ASCII versions

Client APlIs for

— command line, C/C++, C#, Go, PHP, Java, Python, Ruby, Perl, Erlang, Lua,
LISP, Windows/.NET, mySQL, PostgreSQL, ColdFusion, ...

December 3, 2018 © 2017-2018 Paul Krzyzanowski 6

p
Example: memcached

» Key-Value store
— Cache is made up of { key, value, expiration time, flags }
— All access is O(1)

e Client software
— Provided with a list of memcached servers
— Hashing algorithm: chooses a server based on the key

« Server software
— Stores keys and values in an in-memory hash table
— Throw out old data when necessary

* LRU cache and time-based expiration
» Obijects expire after a minute to ensure stale data is not returned

— Servers are unaware of each other

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski

Memcached AP|

« Commands sent over TCP (UDP also available)
— Connection may be kept open indefinitely.

e Commands

— Storage

« Storage commands take an expiration time in seconds from
current time or 0 = forever (but may be deleted)

» set — store data

« add — store data only if the server does not have data for the key
* replace — store data if the server does have data for the key

« append — add data after existing data

» prepend — add data before existing data

» cas — check & set: store data only if no one else updated it since |
fetched it
(cas = unique, 64-bit value associated with the item)

— Retrieval

» get — retrieve one or more keys: returns key, flags, bytes, and cas
unique

December 3, 2018 © 2017-2018 Paul Krzyzanowski

[Memcached AP|

Commands

— Deletion
» delete key

— Increment/decrement
» Treat data as a 64-bit unsigned integer and add/subtract value
* incr key value — increment key by value
« decr key value — decrement key by value

— Update expiration
» touch key exptime — Update the expiration time

— Get Statistics
 stats — various options for reporting statistics
— Flush

 flush_all — clear the cache

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski

-

Another example: Redis

.

Memory cache + in-memory database + message broker

* Open source: see redis.io é redis

* Text-based command interface

 Features

— Key-value store

— Transactions

— Publish/subscribe messaging

— Expiration of data

— Built-in replication

— Optional disk persistence

— Lua scripting (via EVAL command)

— Automatic partitioning with Redis Cluster

« Used by

— Twitter, GitHub, Weibo, Pinterest, Snapchat, Craigslist, Digg,
StackOverflow, Flickr, Shopify, Hulu, Trello, Uber. Coinbase, ...

December 3, 2018 © 2017-2018 Paul Krzyzanowski

10

[Redis Data Types

« Strings
— Simplest type; only type
supported in memcached)
 Lists

— Collections of strings sorted by
order of insertion

« Sets
— Collections of unique, unsorted
strings

e Sorted sets

a score (floating point number)
— Elements sorted by score

— Operations to retrieve ranges
(e.g., top 10, bottom 10)

.

— Every element is associated with

« Hashes

— Maps of fields associated with
values (fields & values are
strings)

« Bitmaps
— Commands to treat strings as
bits (set/clear bits)

« HyperLoglLogs
— Probabilistic data structure to
estimate the cardinality of a set

« Count # of unique items without
storing the entire set of items

— Use a fixed amount of memory

December 3, 2018

© 2017-2018 Paul Krzyzanowski

11

-

Redis as a memory cache

.

Timeouts & Evictions

» Set expiration for specific keys
— Associate a timeout with a key
— Key deleted after the timeout

SET mykey “hello”
EXPIRE mykey 10 expire key in 10 seconds

 Tell the cache to automatically evict (delete) old data
— Methods of eviction
* LRU (least recently used)
* LRU only for keys that have an expiration time

 Random
« Random only for keys that have an expiration time

December 3, 2018 © 2017-2018 Paul Krzyzanowski

12

p
Redis as an in-memory database

« EXEC

— Execute queued commands in a transaction

 MULTI

— Mark the start of a transaction (operations queued until EXEC)

« DISCARD

— Abort transaction & revert to previous values

- WATCH

— Check-and-set behavior to ensure mutual exclusion

— Monitor keys to detect changes
— Abort if change takes place

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski

13

-

Redis as a message broker

.

* Publish/subscribe model
— Senders (publishers) do not send messages to specific receivers
— Messages go to channels

— Subscribers listen to one or more channels, receiving messages of
interest

« Allows for scalability and dynamic topology
— Publishers do not know subscribers
— Subscribers do not know publishers

« Support for pattern-based channels
— Subscribe to all channel names matching a pattern

December 3, 2018 © 2017-2018 Paul Krzyzanowski 14

/
@

Redis partitioning

.

Data can be partitioned across multiple computers

* Types
— Range partitioning
« Use table that maps ranges to instances
— Hash partitioning
« Based on hash(key): works with any key

* Who does the partitioning?
— Client-side partitioning
— Proxy-assisted partitioning
— Query forwarding

December 3, 2018 © 2017-2018 Paul Krzyzanowski

15

.

Discussion
Some Peer-to-Peer Systems

December 3, 2018 © 2017-2018 Paul Krzyzanowski

16

[Example: Gnutella

« Background
— Created by Justin Frankel and Tom Pepper (authors of Winamp)
— AOL acquired their company, Nullsoft in 1999
— In 2000, accidentally released gnutella
— AOL shut down the project but the code was released

 Big idea: create fully distributed file sharing
— Unlike Napster, you cannot shut down gnutella

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski

17

4 N\
Gnutella: Overview

Gnutella is based on query flooding

 Join
— On startup, a node (peer) contacts at least one node
« Asks who its friends are

— These become its “connected nodes”

e Publish
— No need to publish

e Search

— Ask connected nodes. If they don’t know, they will ask their connected
nodes, and so on...

— Oncel/if the reply is found, it is returned to the sender

 Fetch

— The reply identifies the peer; connect to the peer via HTTP &
download

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski 18

-

Gnutella: Search

.

Initial query sent to neighbors (“connected nodes” in an overlay network)

=
= =

Query:

where is file X? .
Ay

Query: A
where is file X? Query\

where is file X?

Ay

December 3, 2018 © 2017-2018 Paul Krzyzanowski

19

-

Gnutella: Search

.

If a node does not have the answer, it forwards the query

Query: iy
. where is file X? . Query:
Ay o

Query: A
where is file X? Query\

where is file X?

Queries have a hop count (time to live) — so we avoid forwarding loops

where is file X?

Query: Query:
Wherg is file X? where is file X? .
~
Query:
. where is file X?

Ay

December 3, 2018 © 2017-2018 Paul Krzyzanowski

20

(Gnutella: Search

If a node has the answer, it replies — replies get forwarded

| have X! !

Query:
. where is file X? . Query
- - where is file X?
Reply
Query: Query:_ _
where is file X? where is file X? .
Reply Reply -

Query:

. where is file X?
Query: Ay .
where is file X? Query\

where is file X?

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski 21

-

Gnutella: Search

.

Original protocol

— Anonymous: you didn’t know if the request you're getting is from the
originator or the forwarder

— Replies went through the same query path

Downloads
— Node connects to the server identified in the reply

— If a connection is not possible due to firewalls, the requesting node can
send a push request for the remote client to send it the file

December 3, 2018 © 2017-2018 Paul Krzyzanowski

22

-

Gnutella: Summary

.

* Pros
— Fully decentralized design
— Searching is distributed
— No control node — cannot be shut down
— Open protocol

« Cons
— Flooding is inefficient:
« Searching may require contacting a lot of systems; limit hop count
— Well-known nodes can become highly congested
— If nodes leave the service, the system is crippled

December 3, 2018 © 2017-2018 Paul Krzyzanowski

23

! Example: FastTrack/Kazaa

« Background
— Kazaa & FastTrack protocol created in 2001
— Team of Estonian programmers — same team that will later create Skype
— Post-Napster and a year after Gnutella was released
— FastTrack: used by others (Grokster, iMesh, Morpheus)
» Proprietary protocol; Several incompatible versions

» Big idea: Some nodes are better than others

— A subset of client nodes have fast connectivity, lots of storage, and fast
processors

— These will be used as supernodes (similar to gnutella’s ultrapeers)

— Supernodes:
» Serve as indexing servers for slower clients
* Know other supernodes

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski

24

p
Kazaa: Supernodes

Kazaa: publish a file

[

Kazaa: search

.

Supernodes answer for all their peers (ordinary nodes)

Reply

December 3, 2018

© 2017-2018 Paul Krzyzanowski

27

p
Kazaa: Discussion

Selective flooding of queries
 Join
— A peer contacts a supernode

 Publish

— Peer sends a list of files to a supernode

« Search
— Send a query to the supernode
— Supernodes flood the query to other supernodes

 Fetch

— Download the file from the peer with the content

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski

28

-

Kazaa: Summary

.

* Pros
— Efficient searching via supernodes
— Flooding restricted to supernodes

« Cons
— Can still miss files
— Well-known supernodes provide opportunity to stop service

» Gnutella also optimized its architecture
— Added ultranodes = supernodes

December 3, 2018 © 2017-2018 Paul Krzyzanowski

29

/
@

BitTorrent

.

« Background
— Introduced in 2002 by Bram Cohen

— Motivation

» Popular content exhibits temporal locality: flash crowds
— E.g., slashdot effect, CNN on 9/11, new movies, new OS releases

* Big idea: allow others to download from you while you are
downloading
— Efficient fetching, not searching
— Single publisher, many downloaders

December 3, 2018 © 2017-2018 Paul Krzyzanowski 30

-

BitTorrent; Overview

.

Enable downloads from peers

 Join

— No need to join
(seed registers with tracker server; peers register when they download)

* Publish
— Create a torrent file; give it to a tracker server

« Search
— Qutside the BitTorrent protocol

— Find the tracker for the file you want, contact it to get a list of peers with
files

 Fetch

— Download pieces of the file from other peers
— At the same time, other peers may request pieces from you

December 3, 2018 © 2017-2018 Paul Krzyzanowski

31

" BitTorrent: Publishing & Fetching

To distribute a file
— Create a .torrent file
— Contains
* name
« Size
» Hash of each piece
« Address of a tracker server
— Start a seed node: initial copy of the full file
— Start the fracker for the file
» Tracker manages uploading & downloading of the content

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski

32

" BitTorrent: Publishing & Fetching

To get a file
— Get a .torrent file

— Contact the tracker named in the file
» Get the list of seeders and other nodes with portions of the file
« Tracker will also announce you to others

— Contact a random node for a list of file piece numbers
— Request a random block of the file

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski

33

/ BitTorrent: Downloading a file in chunks

Tracker identifies:
(1) initial system(s) that has 100% of the file (the seed)
(2) which machines have some pieces of the file downloaded

Complete file
I ! . Seed node (you can have multiple seeds)

Request piece , .,
-:-:-j . '. Peer Seeder: a peer that has the
; i : entire copy of the file
= Request piece ' j
| . Peer
Tracker | L1 f ! ;

\ ! downloading a file
: ! (and offering uploads)
Comy) B Peer
.\' ~ I.I

Leecher: a peer that is }

Swarm: set of peers involved in upload/download for a file

When a peer finished downloading a file, it may become a seed and remain online
without downloading any content.

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski 34

-

BitTorrent Summary

.

* Pros
— Scales well; performs well when many participants

— Gives peers an incentive to share
* Itis sometimes not possible to download without offering to upload

« Cons
— Search is not a part of the protocol; relies on torrent index servers
— Files need to be large for this to work well
— Rare files do not offer distribution
— A tracker needs to be running to bootstrap the downloads

December 3, 2018 © 2017-2018 Paul Krzyzanowski

35

.

Skype

December 3, 2018

© 2017-2018 Paul Krzyzanowski

36

\

User A communicating with User B"?

What's so hard about

Network Address Translation & Firewalls

December 3, 2018

© 2017-2018 Paul Krzyzanowski

37

-

NAT: This is easy

.

from 192.168.60.153:1211

—na

192.168.60.153

192.168.60.155

from 68.36.210.57:21199

N

68.36.210.57

Translation Table

Inside

Outside

192.168.60.153:1211

68.36.210.57:21199

December 3, 2018

© 2017-2018 Paul Krzyzanowski

38

[NAT: This is tricky

.

e ——

192.168.60.153

—————

192.168.60.155

where?

e ———

10.1.1.22

e

10.1.1.33

December 3, 2018

© 2017-2018 Paul Krzyzanowski

39

/ UDP hole punching

Server

Send a message to
establish a NAT mapping (hole)

Send a message to
establish a NAT mapping (hole)

AT

AT

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski

/ UDP hole punching

.

Send a message to
establish a NAT mapping (hole)

Server

Translation Table

Inside

Outside

192.168.60.153:1211

68.36.210.57:21199

Send a message to
establish a NAT mapping (hole)

Translation Table

Inside Outside

172.20.20.15.6:8045 128.6.4.2:18731

December 3, 2018

© 2017-2018 Paul Krzyzanowski

41

/ UDP hole punching

Server

Reach B at
128.6.4.2:18731

Translation Table
Inside Outside

192.168.60.153:1211 | 68.36.210.57:21199

.

Reach A at
68.36.210.57:21199

Translation Table

Inside Outside

172.20.20.15.6:8045 128.6.4.2:18731

December 3, 2018 © 2017-2018 Paul Krzyzanowski

42

/ UDP hole punching

Server

Communicate directly via the holes

NAT,
A
Translation Table
Inside Outside
192.168.60.153:1211 68.36.210.57:21199

.

AT

Translation Table

Inside

Outside

172.20.20.15.6:8045

128.6.4.2:18731

December 3, 2018

© 2017-2018 Paul Krzyzanowski

43

p
. Skype

» First peer-to-peer IP-based phone - 2003
— Developed by the people who created KaZaa
— Niklas Zennstrom and Janus Frees

» Centralized component: login server
— Manages usernames, grants access

» Otherwise fully decentralized: nodes & supernodes
— Each client becomes an active part of the network
— Helps locate and route traffic to other users
— Supernodes: user nodes with highest bandwidth and best connectivity

* No firewalling/NAT

» Act as traffic hubs

« UDP hole punching - solves NAT & firewalling problem

» A Skype client cannot prevent itself from becoming a supernode

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski

44

[Skype Client

 Ports
— Skype client opens a TCP & UDP listening port
— Also opens TCP listening ports on ports 80 & 443

 Host cache
— Each client builds and refreshes a table of reachable nodes
— Contains IP address & port number of supernodes

« Buddy list

— Stored locally — signed & encrypted — not on central server

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski

45

i Skype Startup

« Startup

— Contact skype.com to see if there is a newer version

« Login
— Authenticate user via login server (lots of them; pick one)
— Advertises user's presence to other peers
— Initialize client cache with info about supernodes — first use
— Contact multiple supernodes to ensure they're alive

— Check for presence of NAT/firewall
— Checks for ability to communicate via UDP

« Otherwise try direct TCP
» Otherwise try TCP port 80 (HTTP) or port 4443 (HTTPS)

— Login server creates session key — encrypted with server's private key

N\ J

December 3, 2018 © 2017-2018 Paul Krzyzanowski 46

/
@

Skype User Search

.

« Contact supernode
— Receives 4 nodes to query
— If not found, then the supernode gives the client 8 nodes to query
— Continue process until Skype gives up (unknown criteria)

* |f behind a UDP-restricted firewall

— Skype client sends a request to the supernode via TCP and the
supernode does the entire search.

« Obtain user's public key signed by Skype

— Now we can encrypt data for the other side

December 3, 2018 © 2017-2018 Paul Krzyzanowski

47

[Skype Call Signaling & Messaging

Direct communication
If possible (no NAT/firewall problems)

Forward through a Skype node
Avoids NAT ffirewall problems
Enables mixing for conferencing

By using P2P services, Skype did not have to set up & pay for directory servers
and forwarding nodes

.

December 3, 2018 © 2017-2018 Paul Krzyzanowski 48

Skype Connection

-

\

* |If both users on public IP addresses
— Use a direct TCP connection

« If caller is on port-restricted NAT & callee on public address
— Send signaling info via TCP to a Skype node, which forwards to callee
— Node also routes UDP messages to callee and back

* If both users are on port-restricted NAT & UDP-restricted firewalls

— Both exchange signaling info with another Skype node

— Caller sends media over TCP to an online node, which forwards it to the
callee over TCP

« Advantages of using a node as a relay
— Allows users behind NAT & firewall to communicate
— Users behind NAT or firewall can participate in

December 3, 2018 © 2017-2018 Paul Krzyzanowski

49

-

Special nodes

.

« SkypeOut servers
— Skype to PSTN gateway

« Skypeln servers
— PSTN to Skype gateway

» Skype isn't really peer-to-peer anymore

— By 2012, Skype operated ~10,000 supernodes

— User devices would never be promoted to supernodes

— With up to 50 million simultaneous users, a peer-to-peer environment was
not efficient — there were outages

— Mobile devices aren't suitable as P2P nodes — battery, uptime, and data
volume ($) issues

— All supernodes are now run from Microsoft data centers

December 3, 2018 © 2017-2018 Paul Krzyzanowski

50

.

The end

December 3, 2018

© 2017-2018 Paul Krzyzanowski

51

