
Distributed Systems

26. Distributed Caching & Some Peer-to-Peer Systems

Paul Krzyzanowski

Rutgers University

Fall 2018

1December 3, 2018 © 2017-2018 Paul Krzyzanowski

Caching
• Purpose of a cache

– Temporary storage to increase data access speeds
– Increase effective bandwidth by caching most frequently used data

• Store raw data from slow devices
– Memory cache on CPUs
– Buffer cache in operating system
– Chubby file data and metadata
– GFS master caches all metadata in memory

• Store computed data
– Avoid the need to look the same thing up again

• Results of database queries or file searches
• Spark RDDs in memory

2December 3, 2018 © 2017-2018 Paul Krzyzanowski

User-facing
ServiceUser-facing

ServiceUser-facing
ServiceUser-facing

Service

Distributed In-Memory Caching
• A network memory-based caching service

– Shared by many – typically used by front-end services

• Stores frequently-used (key, value) data
– Old data gets evicted

• General purpose
– Not tied to a specific back-end service

• Not transparent (usually)
– Because it’s a general-purpose service, the programmer gets involved

3

Cache

Back-end
service

User-facing
Service

look here first

if not foundthen look here

December 3, 2018 © 2017-2018 Paul Krzyzanowski

Deployment Models
• Separate caching server

– One or more computers whose sole purpose is to provide a caching service

• Or share cache memory among servers
– Take advantage of free memory from lightly-loaded nodes

4

User-facing Service

User-facing Service

User-facing Service

Cache server

Cache server

Cache server

User-facing Service

User-facing Service

User-facing Service

Cache server

Cache server

Cache server

December 3, 2018 © 2017-2018 Paul Krzyzanowski

What would you use it for?

• Cache user session state on web application servers
– No need to keep user coming back to the same computer

• Cache user preferences, shopping carts, etc.
– Avoid repeated database lookups

• Cache rendered HTML pages
– Avoid re-processing server-side includes, JSP/ASP/PHP code

5December 3, 2018 © 2017-2018 Paul Krzyzanowski

Example: memcached
• Free & open source distributed memory caching

• Used by
– Facebook, Wikipedia, Flickr, Twitter, YouTube,

Digg, Bebo, WordPress, Craigslist, …

• Protocol
– Binary & ASCII versions

• Client APIs for
– command line, C/C++, C#, Go, PHP, Java, Python, Ruby, Perl, Erlang, Lua,

LISP, Windows/.NET, mySQL, PostgreSQL, ColdFusion, …

6

memcached.org

December 3, 2018 © 2017-2018 Paul Krzyzanowski

Example: memcached
• Key-Value store

– Cache is made up of { key, value, expiration time, flags }
– All access is O(1)

• Client software
– Provided with a list of memcached servers
– Hashing algorithm: chooses a server based on the key

• Server software
– Stores keys and values in an in-memory hash table
– Throw out old data when necessary

• LRU cache and time-based expiration
• Objects expire after a minute to ensure stale data is not returned

– Servers are unaware of each other

7December 3, 2018 © 2017-2018 Paul Krzyzanowski

Memcached API

• Commands sent over TCP (UDP also available)
– Connection may be kept open indefinitely.

• Commands
– Storage

• Storage commands take an expiration time in seconds from
current time or 0 = forever (but may be deleted)

• set – store data
• add – store data only if the server does not have data for the key
• replace – store data if the server does have data for the key
• append – add data after existing data
• prepend – add data before existing data
• cas – check & set: store data only if no one else updated it since I

fetched it
(cas = unique, 64-bit value associated with the item)

– Retrieval
• get – retrieve one or more keys: returns key, flags, bytes, and cas

unique

8December 3, 2018 © 2017-2018 Paul Krzyzanowski

Memcached API

Commands
– Deletion

• delete key

– Increment/decrement
• Treat data as a 64-bit unsigned integer and add/subtract value
• incr key value – increment key by value
• decr key value – decrement key by value

– Update expiration
• touch key exptime – Update the expiration time

– Get Statistics
• stats – various options for reporting statistics

– Flush
• flush_all – clear the cache

9December 3, 2018 © 2017-2018 Paul Krzyzanowski

Another example: Redis
Memory cache + in-memory database + message broker
• Open source: see redis.io
• Text-based command interface
• Features

– Key-value store
– Transactions
– Publish/subscribe messaging
– Expiration of data
– Built-in replication
– Optional disk persistence
– Lua scripting (via EVAL command)
– Automatic partitioning with Redis Cluster

• Used by
– Twitter, GitHub, Weibo, Pinterest, Snapchat, Craigslist, Digg,

StackOverflow, Flickr, Shopify, Hulu, Trello, Uber. Coinbase, …

10December 3, 2018 © 2017-2018 Paul Krzyzanowski

Redis Data Types
• Strings

– Simplest type; only type
supported in memcached)

• Lists
– Collections of strings sorted by

order of insertion

• Sets
– Collections of unique, unsorted

strings

• Sorted sets
– Every element is associated with

a score (floating point number)
– Elements sorted by score
– Operations to retrieve ranges

(e.g., top 10, bottom 10)

• Hashes
– Maps of fields associated with

values (fields & values are
strings)

• Bitmaps
– Commands to treat strings as

bits (set/clear bits)

• HyperLogLogs
– Probabilistic data structure to

estimate the cardinality of a set
• Count # of unique items without

storing the entire set of items
– Use a fixed amount of memory

11December 3, 2018 © 2017-2018 Paul Krzyzanowski

Redis as a memory cache
Timeouts & Evictions

• Set expiration for specific keys
– Associate a timeout with a key
– Key deleted after the timeout

SET mykey “hello”
EXPIRE mykey 10 expire key in 10 seconds

• Tell the cache to automatically evict (delete) old data
– Methods of eviction

• LRU (least recently used)
• LRU only for keys that have an expiration time
• Random
• Random only for keys that have an expiration time

12December 3, 2018 © 2017-2018 Paul Krzyzanowski

Redis as an in-memory database

• EXEC

– Execute queued commands in a transaction

• MULTI

– Mark the start of a transaction (operations queued until EXEC)

• DISCARD

– Abort transaction & revert to previous values

• WATCH

– Check-and-set behavior to ensure mutual exclusion

– Monitor keys to detect changes

– Abort if change takes place

13December 3, 2018 © 2017-2018 Paul Krzyzanowski

Redis as a message broker

• Publish/subscribe model
– Senders (publishers) do not send messages to specific receivers
– Messages go to channels
– Subscribers listen to one or more channels, receiving messages of

interest

• Allows for scalability and dynamic topology
– Publishers do not know subscribers
– Subscribers do not know publishers

• Support for pattern-based channels
– Subscribe to all channel names matching a pattern

14December 3, 2018 © 2017-2018 Paul Krzyzanowski

Redis partitioning

Data can be partitioned across multiple computers

• Types
– Range partitioning

• Use table that maps ranges to instances
– Hash partitioning

• Based on hash(key): works with any key

• Who does the partitioning?
– Client-side partitioning
– Proxy-assisted partitioning
– Query forwarding

15December 3, 2018 © 2017-2018 Paul Krzyzanowski

Discussion
Some Peer-to-Peer Systems

16December 3, 2018 © 2017-2018 Paul Krzyzanowski

Example: Gnutella

• Background
– Created by Justin Frankel and Tom Pepper (authors of Winamp)
– AOL acquired their company, Nullsoft in 1999
– In 2000, accidentally released gnutella
– AOL shut down the project but the code was released

• Big idea: create fully distributed file sharing
– Unlike Napster, you cannot shut down gnutella

17December 3, 2018 © 2017-2018 Paul Krzyzanowski

Gnutella: Overview

Gnutella is based on query flooding
• Join

– On startup, a node (peer) contacts at least one node
• Asks who its friends are

– These become its “connected nodes”

• Publish
– No need to publish

• Search
– Ask connected nodes. If they don’t know, they will ask their connected

nodes, and so on…
– Once/if the reply is found, it is returned to the sender

• Fetch
– The reply identifies the peer; connect to the peer via HTTP &

download

18December 3, 2018 © 2017-2018 Paul Krzyzanowski

Gnutella: Search

19

Query:
where is file X? Query:

where is file X?

Query:
where is file X?

Initial query sent to neighbors (“connected nodes” in an overlay network)

December 3, 2018 © 2017-2018 Paul Krzyzanowski

Gnutella: Search

20

Query:
where is file X? Query:

where is file X?

Query:
where is file X?

Query:
where is file X?

Query:
where is file X? Query:

where is file X?

Query:
where is file X?

If a node does not have the answer, it forwards the query

Queries have a hop count (time to live) – so we avoid forwarding loops

December 3, 2018 © 2017-2018 Paul Krzyzanowski

Gnutella: Search

21

Query:
where is file X? Query:

where is file X?

Query:
where is file X?

Query:
where is file X?

Query:
where is file X? Query:

where is file X?

Query:
where is file X?

If a node has the answer, it replies – replies get forwarded

I have X!

Reply

Reply

Reply

Reply

December 3, 2018 © 2017-2018 Paul Krzyzanowski

Gnutella: Search
Original protocol

– Anonymous: you didn’t know if the request you’re getting is from the
originator or the forwarder

– Replies went through the same query path

Downloads
– Node connects to the server identified in the reply
– If a connection is not possible due to firewalls, the requesting node can

send a push request for the remote client to send it the file

22December 3, 2018 © 2017-2018 Paul Krzyzanowski

Gnutella: Summary

• Pros

– Fully decentralized design

– Searching is distributed

– No control node – cannot be shut down

– Open protocol

• Cons

– Flooding is inefficient:

• Searching may require contacting a lot of systems; limit hop count

– Well-known nodes can become highly congested

– If nodes leave the service, the system is crippled

23December 3, 2018 © 2017-2018 Paul Krzyzanowski

Example: FastTrack/Kazaa

• Background
– Kazaa & FastTrack protocol created in 2001
– Team of Estonian programmers – same team that will later create Skype
– Post-Napster and a year after Gnutella was released
– FastTrack: used by others (Grokster, iMesh, Morpheus)

• Proprietary protocol; Several incompatible versions

• Big idea: Some nodes are better than others
– A subset of client nodes have fast connectivity, lots of storage, and fast

processors
– These will be used as supernodes (similar to gnutella’s ultrapeers)
– Supernodes:

• Serve as indexing servers for slower clients
• Know other supernodes

24December 3, 2018 © 2017-2018 Paul Krzyzanowski

Kazaa: Supernodes

25December 3, 2018 © 2017-2018 Paul Krzyzanowski

Kazaa: publish a file

26

I have X

December 3, 2018 © 2017-2018 Paul Krzyzanowski

Kazaa: search

27

Query X

Reply

query
query

query

query

query

Supernodes answer for all their peers (ordinary nodes)

December 3, 2018 © 2017-2018 Paul Krzyzanowski

Kazaa: Discussion

Selective flooding of queries

• Join
– A peer contacts a supernode

• Publish
– Peer sends a list of files to a supernode

• Search
– Send a query to the supernode
– Supernodes flood the query to other supernodes

• Fetch
– Download the file from the peer with the content

28December 3, 2018 © 2017-2018 Paul Krzyzanowski

Kazaa: Summary

• Pros
– Efficient searching via supernodes
– Flooding restricted to supernodes

• Cons
– Can still miss files
– Well-known supernodes provide opportunity to stop service

• Gnutella also optimized its architecture
– Added ultranodes = supernodes

29December 3, 2018 © 2017-2018 Paul Krzyzanowski

BitTorrent

• Background
– Introduced in 2002 by Bram Cohen
– Motivation

• Popular content exhibits temporal locality: flash crowds
– E.g., slashdot effect, CNN on 9/11, new movies, new OS releases

• Big idea: allow others to download from you while you are
downloading
– Efficient fetching, not searching
– Single publisher, many downloaders

30December 3, 2018 © 2017-2018 Paul Krzyzanowski

BitTorrent: Overview
Enable downloads from peers

• Join
– No need to join

(seed registers with tracker server; peers register when they download)

• Publish
– Create a torrent file; give it to a tracker server

• Search
– Outside the BitTorrent protocol
– Find the tracker for the file you want, contact it to get a list of peers with

files

• Fetch
– Download pieces of the file from other peers
– At the same time, other peers may request pieces from you

31December 3, 2018 © 2017-2018 Paul Krzyzanowski

BitTorrent: Publishing & Fetching

To distribute a file
– Create a .torrent file

– Contains

• name

• Size

• Hash of each piece

• Address of a tracker server

– Start a seed node: initial copy of the full file

– Start the tracker for the file

• Tracker manages uploading & downloading of the content

32December 3, 2018 © 2017-2018 Paul Krzyzanowski

BitTorrent: Publishing & Fetching

To get a file
– Get a .torrent file
– Contact the tracker named in the file

• Get the list of seeders and other nodes with portions of the file
• Tracker will also announce you to others

– Contact a random node for a list of file piece numbers
– Request a random block of the file

33December 3, 2018 © 2017-2018 Paul Krzyzanowski

BitTorrent: Downloading a file in chunks

34

Tracker identifies:
(1) initial system(s) that has 100% of the file (the seed)
(2) which machines have some pieces of the file downloaded

Tracker

Complete file
Seed node (you can have multiple seeds)

Peer

Peer

Peer

Request piece

Request piece

When a peer finished downloading a file, it may become a seed and remain online
without downloading any content.

Swarm: set of peers involved in upload/download for a file

Leecher: a peer that is
downloading a file
(and offering uploads)

Seeder: a peer that has the
entire copy of the file

December 3, 2018 © 2017-2018 Paul Krzyzanowski

BitTorrent Summary

• Pros
– Scales well; performs well when many participants
– Gives peers an incentive to share

• It is sometimes not possible to download without offering to upload

• Cons
– Search is not a part of the protocol; relies on torrent index servers
– Files need to be large for this to work well
– Rare files do not offer distribution
– A tracker needs to be running to bootstrap the downloads

35December 3, 2018 © 2017-2018 Paul Krzyzanowski

Skype

36December 3, 2018 © 2017-2018 Paul Krzyzanowski

What's so hard about
User A communicating with User B?

Network Address Translation & Firewalls

37December 3, 2018 © 2017-2018 Paul Krzyzanowski

NAT: This is easy

38

NAT
Gateway

68.36.210.57

192.168.60.153

192.168.60.155

from 192.168.60.153:1211 from 68.36.210.57:21199

Translation Table

Inside Outside

192.168.60.153:1211 68.36.210.57:21199

December 3, 2018 © 2017-2018 Paul Krzyzanowski

NAT: This is tricky

39

192.168.60.153

192.168.60.155

10.1.1.22

10.1.1.33

where?

NAT
Gateway

NAT
Gateway

December 3, 2018 © 2017-2018 Paul Krzyzanowski

UDP hole punching

40

A B

NAT NAT

Send a message to
establish a NAT mapping (hole)

Server

Send a message to
establish a NAT mapping (hole)

December 3, 2018 © 2017-2018 Paul Krzyzanowski

UDP hole punching

41

A B

NAT NAT

Send a message to
establish a NAT mapping (hole)

Server

Send a message to
establish a NAT mapping (hole)

Translation Table

Inside Outside

192.168.60.153:1211 68.36.210.57:21199

Translation Table

Inside Outside

172.20.20.15.6:8045 128.6.4.2:18731

December 3, 2018 © 2017-2018 Paul Krzyzanowski

UDP hole punching

42

A B

NAT NAT

Reach B at

128.6.4.2:18731

Server

Translation Table

Inside Outside

192.168.60.153:1211 68.36.210.57:21199

Translation Table

Inside Outside

172.20.20.15.6:8045 128.6.4.2:18731

Reach A at

68.36.210.57:21199

December 3, 2018 © 2017-2018 Paul Krzyzanowski

UDP hole punching

43

A B

NAT NAT

Server

Translation Table
Inside Outside

192.168.60.153:1211 68.36.210.57:21199

Translation Table
Inside Outside

172.20.20.15.6:8045 128.6.4.2:18731

Communicate directly via the holes

December 3, 2018 © 2017-2018 Paul Krzyzanowski

Skype

• First peer-to-peer IP-based phone - 2003
– Developed by the people who created KaZaa
– Niklas Zennström and Janus Frees

• Centralized component: login server
– Manages usernames, grants access

• Otherwise fully decentralized: nodes & supernodes
– Each client becomes an active part of the network
– Helps locate and route traffic to other users
– Supernodes: user nodes with highest bandwidth and best connectivity

• No firewalling/NAT
• Act as traffic hubs
• UDP hole punching - solves NAT & firewalling problem
• A Skype client cannot prevent itself from becoming a supernode

44December 3, 2018 © 2017-2018 Paul Krzyzanowski

Skype Client

• Ports

– Skype client opens a TCP & UDP listening port

– Also opens TCP listening ports on ports 80 & 443

• Host cache

– Each client builds and refreshes a table of reachable nodes

– Contains IP address & port number of supernodes

• Buddy list

– Stored locally – signed & encrypted – not on central server

45December 3, 2018 © 2017-2018 Paul Krzyzanowski

Skype Startup

• Startup
– Contact skype.com to see if there is a newer version

• Login
– Authenticate user via login server (lots of them; pick one)
– Advertises user's presence to other peers
– Initialize client cache with info about supernodes – first use
– Contact multiple supernodes to ensure they're alive

– Check for presence of NAT/firewall
– Checks for ability to communicate via UDP

• Otherwise try direct TCP
• Otherwise try TCP port 80 (HTTP) or port 4443 (HTTPS)

– Login server creates session key – encrypted with server's private key

46December 3, 2018 © 2017-2018 Paul Krzyzanowski

Skype User Search

• Contact supernode

– Receives 4 nodes to query

– If not found, then the supernode gives the client 8 nodes to query

– Continue process until Skype gives up (unknown criteria)

• If behind a UDP-restricted firewall

– Skype client sends a request to the supernode via TCP and the

supernode does the entire search.

• Obtain user's public key signed by Skype

– Now we can encrypt data for the other side

47December 3, 2018 © 2017-2018 Paul Krzyzanowski

Skype Call Signaling & Messaging

48

Direct communication
If possible (no NAT/firewall problems)

Forward through a Skype node
Avoids NAT/firewall problems

Enables mixing for conferencing

By using P2P services, Skype did not have to set up & pay for directory servers

and forwarding nodes

December 3, 2018 © 2017-2018 Paul Krzyzanowski

Skype Connection
• If both users on public IP addresses

– Use a direct TCP connection

• If caller is on port-restricted NAT & callee on public address
– Send signaling info via TCP to a Skype node, which forwards to callee
– Node also routes UDP messages to callee and back

• If both users are on port-restricted NAT & UDP-restricted firewalls
– Both exchange signaling info with another Skype node
– Caller sends media over TCP to an online node, which forwards it to the

callee over TCP

• Advantages of using a node as a relay
– Allows users behind NAT & firewall to communicate
– Users behind NAT or firewall can participate in

49December 3, 2018 © 2017-2018 Paul Krzyzanowski

Special nodes
• SkypeOut servers

– Skype to PSTN gateway

• SkypeIn servers
– PSTN to Skype gateway

• Skype isn't really peer-to-peer anymore
– By 2012, Skype operated ~10,000 supernodes
– User devices would never be promoted to supernodes
– With up to 50 million simultaneous users, a peer-to-peer environment was

not efficient – there were outages
– Mobile devices aren't suitable as P2P nodes – battery, uptime, and data

volume ($) issues
– All supernodes are now run from Microsoft data centers

50December 3, 2018 © 2017-2018 Paul Krzyzanowski

The end

51December 3, 2018 © 2017-2018 Paul Krzyzanowski

