
CS 417 12/10/18

© 2017 Paul Krzyzanowski 1

Distributed Systems
27. Engineering Distributed Systems

Paul Krzyzanowski

Rutgers University

Fall 2018

1December 10, 2018 © 2017-2018 Paul Krzyzanowski

We need distributed systems

• We often have a lot of data to ingest, process, and/or store
– The data or request volume (or both) are too big for one system to

handle
– Balance load – distribute input, computation, and storage

• We also want to distribute systems for
– High availability
– Remote operations (e.g., cars, mobile phones, ATM systems)
– Geographic proximity (reduced latency)
– Content & Commerce: news, social, etc.
– Sharing & access to services from anywhere (cloud-based)
– Separating services (e.g., file storage, authentication) – SOA

2December 10, 2018 © 2017-2018 Paul Krzyzanowski

Good design

Design software as a collection of services

Well-designed services are

– Well-defined & documented

– Have minimal dependencies

– Easy to test

– Language independent & platform independent
Will you be able to access your Java service from a Go or Python program?
Does the service only work with an iOS app?

Can be developed and
tested separately

3December 10, 2018 © 2017-2018 Paul Krzyzanowski

KISS: Keep It Simple, Stupid!
• Make services easy to use

• Will others be able to make sense of it?

• Will you understand your own service a year from now?

• Is it easy to test and validate the service?

• Will you (or someone else) be able to fix problems?

Everyone knows that debugging is twice as hard as writing a
program in the first place. So if you're as clever as you can be when
you write it, how will you ever debug it?

– Brian Kernighan

http://en.wikipedia.org/wiki/KISS_principle

4December 10, 2018 © 2017-2018 Paul Krzyzanowski

KISS: Keep It Simple, Stupid!
• As with any programming, keep it simple

• Don’t over-engineer or over-optimize

• Understand where potential problems may be

• Redesign what’s needed

5December 10, 2018 © 2017-2018 Paul Krzyzanowski

Good protocol design is crucial

• Interfaces should make sense

• Sockets are still the core of interacting with services

• RPC (& remote objects) great for local, non-web services
… but think about what happens when things fail

– Will the service keep re-trying?

– How long before it gives up?

– Was any state lost on the server?

– Can any failover happen automatically?

6December 10, 2018 © 2017-2018 Paul Krzyzanowski

CS 417 12/10/18

© 2017 Paul Krzyzanowski 2

Efficient & portable marshaling

• Efficiency & interoperability

… and avoid writing your own parser

• REST/JSON popular for web-based services
– XML is still out there … but not efficient and used less and less

– REST/JSON great for public-facing & web services

• But you don’t need to use web services for all interfaces

– There are benefits … but also costs

• Use automatic code generation from interfaces

– It’s easier and reduces bugs

7December 10, 2018 © 2017-2018 Paul Krzyzanowski

Efficient & portable marshaling

• Google Protocol Buffers gaining in lots of places

– Self describing schemas – defines the service interface

– Versioning built in

– Supports multiple languages

– Really efficient and compact

• Investigate successors … like Cap’n Proto (capnproto.org)

– Pick something with staying power –

You don’t want to rewrite a lot of code when your interface generator is no

longer supported

• Lots of RPC and RPC-like systems out there –

many use JSON for marshaling

– Supported by C, C++, Go, Python, PHP, etc.

8December 10, 2018 © 2017-2018 Paul Krzyzanowski

Design for Scale

9December 10, 2018 © 2017-2018 Paul Krzyzanowski

Prepare to go from this…

1996: Basement lab of Gates Information Sciences, Stanford
10December 10, 2018 © 2017-2018 Paul Krzyzanowski

1996: Basement lab of Gates Information Sciences, Stanford

… and this …

11December 10, 2018 © 2017-2018 Paul Krzyzanowski

Google Data Center: Douglas County, Georgia

… to this

http://www.google.com/about/datacenters/gallery/
12December 10, 2018 © 2017-2018 Paul Krzyzanowski

CS 417 12/10/18

© 2017 Paul Krzyzanowski 3

Google Data Center: Council Bluffs, Iowa

… and this

http://www.google.com/about/datacenters/gallery/

13December 10, 2018 © 2017-2018 Paul Krzyzanowski

Facebook’s Data Center: Prineville, Oregon

… or this

Photo by Katie Fehrenbacher. From “A rare look inside Facebook’s Oregon data center”, Aug 17, 2012, © 2012 GigaOM. Used with permission
http://gigaom.com/cleantech/a-rare-look-inside-facebooks-oregon-data-center-photos-video/

14December 10, 2018 © 2017-2018 Paul Krzyzanowski

Scalability

• Design for scale
– Be prepared to re-design

• Something that starts as a collection of three machines
might grow
– Will the algorithms scale?

• Don’t be afraid to test alternate designs

15December 10, 2018 © 2017-2018 Paul Krzyzanowski

Design for scale & parallelism

• Figure out how to partition problems for maximum parallelism

– Shard data

– Concurrent processes with minimal or no IPC

– Do a lot of work in parallel and then merge results

• Design with scaling in mind – even if you don’t have a need for it now

– E.g., MapReduce works on 2 systems or 2,000

• Consider your need to process endless streaming data vs. stored data

• Partition data for scalability

– Distribute data across multiple machines
(e.g., Dynamo or Bigtable)

• Use multithreading

– It lets the OS take advantage of multi-core CPUs

16December 10, 2018 © 2017-2018 Paul Krzyzanowski

Design for High Availability

17December 10, 2018 © 2017-2018 Paul Krzyzanowski

Availability

• Everything breaks: hardware and software will fail
– Disks, even SSDs
– Routers
– Memory
– Switches
– ISP connections
– Power supplies; data center power, UPS systems

• Even amazingly reliable systems will fail
– Put together 10,000 systems, each with 30 years MTBF
– Expect an average of a failure per day!

18

Building Software Systems at Google and Lessons Learned, Jeff Dean, Google
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/people/jeff/Stanford-DL-Nov-2010.pdf

December 10, 2018 © 2017-2018 Paul Krzyzanowski

CS 417 12/10/18

© 2017 Paul Krzyzanowski 4

Availability

• Partitions will happen – design with them in mind

• Google’s experience
– 1-5% of disk drives die per year (300 out of 10,000 drives)
– 2-4% of servers fail – servers crash at least twice per year

• Don’t underestimate human error
– Service configuration
– System configuration
– Router, switches, cabling
– Starting/stopping services

Building Software Systems at Google and Lessons Learned, Jeff Dean, Google
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/people/jeff/Stanford-DL-Nov-2010.pdf

19December 10, 2018 © 2017-2018 Paul Krzyzanowski

It’s unlikely everything will fail at once
• Software has to be prepared to deal with partial failure

• Watch out for default behavior on things like RPC retries
– Is retrying what you really want … or should you try alternate servers?
– Failure breaks function-call transparency.
– RPC isn’t always as pretty as it looks in demo code
– Handling errors often makes code big and ugly
– What happens if a message does not arrive?

• It’s easier to handle with designs that support asynchronous sending and delivery and handle
timeouts

• Replicated data & distributed state machines can help
– Decide on stateful vs. stateless services
– Incoming messages take a module to a different state
– Know the states in your system and valid transitions

• Be sure software does not get into an unknown state

20December 10, 2018 © 2017-2018 Paul Krzyzanowski

Replication

• Replication helps handle failure (it’s a form of backup)
… and increase performance by reducing latency

→ It reduces contention & load on each system
and gives geographic diversity

• BUT – it has a cost – we need to understand consistency
– Strict consistency impacts latency, partition tolerance, & availability
– Eventual consistency

… lets us replicate in the background or delay until a system is reachable
– But we need to be aware of the repercussions

• Total ordering and state synchronization can be really useful
– But needs to be done reliably
– Need consensus – Raft or Paxos

21December 10, 2018 © 2017-2018 Paul Krzyzanowski

Fault Detection

• Detection
– Heartbeat networks: watch out for partitions!

– Software process monitoring

– Software heartbeats & watchdog timers

– How long is it before you detect something is wrong and do something
about it?

• What if a service is not responding?
– Sure, you can have it restarted

– But a user may not have patience.

• Maybe fail gracefully

• Or, better yet, have an active backup

– Use logging – it may be your only hope in figuring out what went
wrong with your systems or your software

22December 10, 2018 © 2017-2018 Paul Krzyzanowski

Design for Low Latency

23December 10, 2018 © 2017-2018 Paul Krzyzanowski

Design for Low Latency

• Users hate to wait

– Amazon: every 100ms latency costs 1% sales

– Google: extra 500ms latency reduces traffic by 20%

– Sometimes, milliseconds really matter, like high frequency trading

• E.g., 2010: Spread Networks built NYC-Chicago fiber: reduce RTT from 16 ms to

13ms

• Avoid moving unnecessary data

• Reduce the number of operations through clean design

– Particularly number of API calls

24December 10, 2018 © 2017-2018 Paul Krzyzanowski

CS 417 12/10/18

© 2017 Paul Krzyzanowski 5

Design for Low Latency
• Reduce amount of data per remote request

– Efficient RPC encoding & compression (if it makes sense)

• Avoid extra hops
– E.g., Dynamo vs. CAN or finger tables

• Do things in parallel

• Load balancing, replication, geographic proximity

• CPU performance scaled faster than networks or disk latency

• You cannot defeat physics
It’s 9567 miles (15,396 km) from New Jersey to Singapore
= 51 ms via direct fiber … but you don’t have a direct fiber!

25December 10, 2018 © 2017-2018 Paul Krzyzanowski

Know the cost of everything

Don’t be afraid to profile!
– CPU overhead

– Memory usage of each service

– RPC round trip time

– UDP vs. TCP

– Time to get a lock

– Time to read or write data

– Time to update all replicas

– Time to transfer a block of data to another service
… in another datacenter?

Systems & software change frequently
– Don’t trust the web … find out for yourself

26December 10, 2018 © 2017-2018 Paul Krzyzanowski

Asynchronous Operations

Some things are best done asynchronously

• Provide an immediate response to the user while still committing
transactions or updating files

• Replicate data eventually
– Opportunity to balance load by delaying operations
– Reduce latency

• The delay to copy data does not count in the transaction time!

– But watch out for consistency problems (can you live with them?)

• But if you need consistency, use frameworks that provide it
– Avoid having users reinvent consistency solutions

27December 10, 2018 © 2017-2018 Paul Krzyzanowski

Understand what you’re working with

• Understand underlying implementations

– The tools you’re using & their repercussions

– Scalability

– Data sizes

– Latency

– Performance under various failure modes

– Consistency guarantees

• Design services to hide the complexity of distribution from

higher-level services

– E.g., MapReduce, Pregel, Dynamo

December 10, 2018 © 2017-2018 Paul Krzyzanowski 28

Profiling

• Continuous benchmarking and testing
– Avoid future surprises

• Optimize critical paths
– Watch out for overhead of interpreted environments

– Consider languages that compile, such as go

December 10, 2018 © 2017-2018 Paul Krzyzanowski 29

Think about the worst case

• Deploy across multiple Availability Zones (AZs)
– Handle data center failure

• Don’t be dependent on any one system for the service to
function

• Prepare for disaster recovery
– Periodic snapshots
– Long-term storage of data (e.g., Amazon Glacier)
– Recovery of all software needed to run services (e.g., via Amazon S3)

December 10, 2018 © 2017-2018 Paul Krzyzanowski 30

CS 417 12/10/18

© 2017 Paul Krzyzanowski 6

Don’t do everything yourself

• There’s a lot of stuff out there
– Use it if it works & you understand it

• Security is really difficult to get right
– Authentication, encryption, key management, protocols
– Consider using API gateways for service authorization
– Secure, authenticated communication channels
– Distributed authorization with OAuth
– Authorization service via OAuth OpenID Connect

December 10, 2018 © 2017-2018 Paul Krzyzanowski 31

Test & deployment

• Test partial failure modes
– What happens when some services fail?
– What if the network is slow vs. partitioned?

• Unit tests & system tests
– Unit testing
– Integration & smoke testing (build verification): see that the system

seems to work
– Input validation
– Scale: add/remove systems for scale
– Failure
– Latency
– Load
– Memory use over time

December 10, 2018 © 2017-2018 Paul Krzyzanowski 32

Infrastructure as code

• Version-managed & archived configurations

• Never a need for manual configuration

• Create arbitrary number of environments

• Deploy development, test, & production environments

• E.g., TerraForm

December 10, 2018 © 2017-2018 Paul Krzyzanowski 33

Blue/Green deployment

• Run two identical production environments

• Two versions of each module of code: blue & green
– One is live and the other idle

• Production points to code versions of a specific color

• Staging environment points to the latest version of each

module

– Deploy new code to non-production color

– Test & validate

– Switch to new deployment color

• Simplifies rollback

December 10, 2018 © 2017-2018 Paul Krzyzanowski 34

https://blogs.oracle.com/jag/resource/Fallacies.html
December 10, 2018 © 2017-2018 Paul Krzyzanowski 35

The end

36December 10, 2018 © 2017-2018 Paul Krzyzanowski

