CS 417 12/10/18

[We need distributed systems

» We often have a lot of data to ingest, process, and/or store

— The data or request volume (or both) are too big for one system to
handle
— Balance load — distribute input, computation, and storage

Distributed Systems
27. Engineering Distributed Systems

» We also want to distribute systems for
— High availability
— Remote operations (e.g., cars, mobile phones, ATM systems)

Paul Krzyzanowski — Geographic proximity (reduced latency)
Rutgers University — Content & Commerce: news, social, etc.
Fall 2018 — Sharing & access to services from anywhere (cloud-based)

— Separating services (e.g., file storage, authentication) — SOA

- J .)

Decermber 10, 2018 ©2017-2018 Paul Krzyzanowski 1 December 10, 2018 ©2017-2018 Paul Kizyzanowski 2

Good design KISS: Keep It Simple, Stupid!

Design software as a collection of services * Make services easy to use

. . » Will others be able to make sense of it?
Well-designed services are

Can be developed and

tested separately

— Well-defined & documented } « Will you understand your own service a year from now?
— Have minimal dependencies « Is it easy to test and validate the service?

— Easy to test
« Will you (or someone else) be able to fix problems?

— Language independent & platform independent E P that debuaaing is twi hard i
veryone Knows that aebugging Is twice as hard as wriling a
Will you be able to access your Java service from a Go or Python program? T 99ing 9

Does the service only work with an iOS app? program in the first place. So if you're as clever as you can be when
you write it, how will you ever debug it?

— Brian Kernighan

http:/en.wikipedia.orgiwik/KISS_principle

. J .
s)) N e ;)) N
KISS: Keep It Simple, Stupid! Good protocol design is crucial
« As with any programming, keep it simple « Interfaces should make sense
« Don't over-engineer or over-optimize * Sockets are still the core of interacting with services

) * RPC (& remote objects) great for local, non-web services
« Understand where potential problems may be X X i

... but think about what happens when things fail
« Redesign what’s needed — Will the service keep re-trying?

— How long before it gives up?

— Was any state lost on the server?

— Can any failover happen automatically?

. J - J

December 10,2018 ©2017-2018 Paul Krzyzanowski 5 December 10, 2018 ©2017-2018 Paul Krzyzanowski 6

© 2017 Paul Krzyzanowski 1

CS 417

12/10/18

Efficient & portable marshaling

» Efficiency & interoperability
... and avoid writing your own parser

* REST/JSON popular for web-based services

— REST/JSON great for public-facing & web services

— There are benefits ... but also costs

+ Use automatic code generation from interfaces
— It's easier and reduces bugs

— XML is still out there ... but not efficient and used less and less

» But you don’t need to use web services for all interfaces

Decermber 10, 2018 ©2017-2018 Paul Krzyzanowski

[Efficient & portable marshaling

» Google Protocol Buffers gaining in lots of places
— Self describing schemas — defines the service interface
— Versioning built in
— Supports multiple languages
— Really efficient and compact

« Investigate successors ... like Cap’n Proto (capnproto.org)
— Pick something with staying power —
You don’t want to rewrite a lot of code when your interface generator is no
longer supported

+ Lots of RPC and RPC-like systems out there —
many use JSON for marshaling
— Supported by C, C++, Go, Python, PHP, etc.

- J

December 10, 2018 ©2017-2018 Paul Kizyzanowski 8

Design for Scale

-

December 10,2018 ©2017-2018 Paul Krzyzanowski

A - _ 11
1996: Basement lab of Gates Information Sciences, Stanford

P e e

© 2017 Paul Krzyzanowski

\ A\

- ¢ »

Google Data Center: Douglas'County. Georgia,
» ek

2018 Paul Krzyzi W ¥

CS 417

12/10/18

=
Scalability

+ Design for scale
— Be prepared to re-design

» Something that starts as a collection of three machines
might grow
— Will the algorithms scale?

+ Don't be afraid to test alternate designs

-

Design for scale & parallelism

December 10,2018 ©2017-2018 Paul Krzyzanowski

« Figure out how to partition problems for maximum parallelism
— Shard data
— Concurrent processes with minimal or no IPC
— Do a lot of work in parallel and then merge results

« Design with scaling in mind — even if you don’t have a need for it now
— E.g., MapReduce works on 2 systems or 2,000

« Consider your need to process endless streaming data vs. stored data

« Partition data for scalability
— Distribute data across multiple machines
(e.g., Dynamo or Bigtable)
* Use multithreading
— It lets the OS take advantage of multi-core CPUs

December 10, 2018 ©2017-2018 Paul Kizyzanowski i

Design for High Availability

-

December 10,2018 ©2017-2018 Paul Krzyzanowski

s

Availability

-

« Everything breaks: hardware and software will fail
— Disks, even SSDs
— Routers
— Memory
— Switches
— ISP connections
— Power supplies; data center power, UPS systems

» Even amazingly reliable systems will fail
— Put together 10,000 systems, each with 30 years MTBF
— Expect an average of a failure per day!

December 10, 2018 ©2017-2018 Paul Krzyzanowski 8

© 2017 Paul Krzyzanowski

CS 417 12/10/18

e 7 (7
Availability It's unlikely everything will fail at once
« Partitions will happen — design with them in mind + Software has to be prepared to deal with partial failure
* Google’s experience « Watch out for default behavior on things like RPC retries
— 1-5% of disk drives die per year (300 out of 10,000 drives) — Is retrying what you really want ... or should you try alternate servers?
— 2-4% of servers fail — servers crash at least twice per year - Failure breaks function-call transparency.
— RPC isn't always as pretty as it looks in demo code
. Don't underestimate human error — Handling errors often makes code big and ugly
. . . — What happens if a message does not arrive?
— Service configuration « It easier to handle with designs that support asynchronous sending and delivery and handle
— System configuration timeouts
— Router, switches, cabling . L .
. . . * Replicated data & distributed state machines can help
— Starting/stopping services ; .
— Decide on stateful vs. stateless services
— Incoming messages take a module to a different state
— Know the states in your system and valid transitions
+ Be sure software does not get into an unknown state
- J & J
Decenber 10, 2018 ©2017-2016 P Kyzanowsa 0 Decemer 10, 2018 ©2017-2018 Paul Kezyzanowsa x
(icati h (. ~
Replication Fault Detection
- Replication helps handle failure (it's a form of backup) * Detection
... and increase performance by reducing latency — Heartbeat networks: watch out for partitions!
— It reduces contention & load on each system — Software process monitoring

and gives geographic diversity — Software heartbeats & watchdog timers

— How long is it before you detect something is wrong and do something
« BUT —it has a cost — we need to understand consistency about it?
— Strict consistency impacts latency, partition tolerance, & availability
— Eventual consistency
... lets us replicate in the background or delay until a system is reachable « What if a service is not responding?

— But we need to be aware of the repercussions — Sure, you can have it restarted

— But a user may not have patience.
- Total ordering and state synchronization can be really useful + Maybe fail gracefully
— But needs to be done reliably « Or, better yet, have an active backup

— Need consensus — Raft or Paxos — Use logging — it may be your only hope in figuring out what went

wrong with your systems or your software
- J & J

December 10,2018 ©2017-2018 Paul Krzyzanowski 2 December 10, 2018 ©2017-2018 Paul Kizyzanowski 2

f Design for Low Latency

+ Users hate to wait

— Amazon: every 100ms latency costs 1% sales

— Google: extra 500ms latency reduces traffic by 20%
. — Sometimes, milliseconds really matter, like high frequency trading
DeS|g n for LOW Latency + E.g., 2010: Spread Networks built NYC-Chicago fiber: reduce RTT from 16 ms to

13ms
« Avoid moving unnecessary data

» Reduce the number of operations through clean design
— Particularly number of API calls

. J . J

December 10,2018 ©2017-2018 Paul Krzyzanowski 2 December 10, 2018 ©2017-2018 Paul Krzyzanowski 2

© 2017 Paul Krzyzanowski 4

CS 417 12/10/18

e 7 (7
Design for Low Latency Know the cost of everything
» Reduce amount of data per remote request Don’t be afraid to proﬁle!
— Efficient RPC encoding & compression (if it makes sense) _ CPU overhead
* Avoid extra hops — Memory usage of each service
— E.g., Dynamo vs. CAN or finger tables — RPC round trip time
« Do things in parallel — UDP vs. TCP
« Load balancing, replication, geographic proximity ~ Time to get a lock
. — Time to read or write data
« CPU performance scaled faster than networks or disk latency . .
— Time to update all replicas
* You cannot defeat physics — Time to transfer a block of data to another service
It's 9567 miles (15,396 km) from New Jersey to Singapore ... in another datacenter?
=51 ms via direct fiber ... but you don’t have a direct fiber!
Systems & software change frequently
— Don't trust the web ... find out for yourself
- J & J
Decenber 10, 2018 ©2017-2016 P Kyzanowsa = Decemer 10, 2018 ©2017-2018 Paul Kezyzanowsa ®
e - R s . - ;
Asynchronous Operations Understand what you’re working with
Some things are best done asynchronously Understand underlying implementations
- Provide an immediate response to the user while still committing ~The t°(_)|_s you're using & their repercussions
transactions or updating files — Scalability
— Data sizes
« Replicate data eventually
i . . — Latency
— Opportunity to balance load by delaying operations X .
— Reduce latency - Perfo.rmance under various failure modes
« The delay to copy data does not count in the transaction time! — Consistency guarantees
— But watch out for consistency problems (can you live with them?
v (cany) « Design services to hide the complexity of distribution from
« But if you need consistency, use frameworks that provide it higher_level services
— Avoid having users reinvent consistency solutions — E.g., MapReduce, Pregel, Dynamo
- J & J
Decenber 10, 2018 ©2017:2018 Pau Kzyzanowsia z Decemoer 10, 2018 ©2017-2018 P Kezyzanowsa 2
(. M s - =
Profiling Think about the worst case
+ Continuous benchmarking and testing * Deploy across multiple Availability Zones (AZs)
— Avoid future surprises — Handle data center failure

» Don’'t be dependent on any one system for the service to
* Optimize critical paths function
— Watch out for overhead of interpreted environments

— Consider languages that compile, such as go ° Prepare for disaster recovery

— Periodic snapshots
— Long-term storage of data (e.g., Amazon Glacier)
— Recovery of all software needed to run services (e.g., via Amazon S3)

. J . J

December 10,2018 ©2017-2018 Paul Krzyzanowski 2 December 10, 2018 ©2017-2018 Paul Krzyzanowski 0

© 2017 Paul Krzyzanowski 5

CS 417

12/10/18

s

Don’t do everything yourself

-

* There’s a lot of stuff out there
— Use it if it works & you understand it

* Security is really difficult to get right
— Authentication, encryption, key management, protocols
— Consider using API gateways for service authorization
— Secure, authenticated communication channels
— Distributed authorization with OAuth
— Authorization service via OAuth OpenlID Connect

Decermber 10, 2018 ©2017-2018 Paul Krzyzanowski

s

Test & deployment

-

* Test partial failure modes
— What happens when some services fail?
— What if the network is slow vs. partitioned?

* Unit tests & system tests

— Unit testing

— Integration & smoke testing (build verification): see that the system
seems to work

— Input validation

— Scale: add/remove systems for scale

— Failure

— Latency

— Load

— Memory use over time

December 10, 2018 ©2017-2018 Paul Kizyzanowski

Ve

Infrastructure as code

-

+ Version-managed & archived configurations

+ Never a need for manual configuration

+ Create arbitrary number of environments

+ Deploy development, test, & production environments

* E.g., TerraForm

December 10,2018 ©2017-2018 Paul Krzyzanowski

Blue/Green deployment

* Run two identical production environments

» Two versions of each module of code: blue & green
— One is live and the other idle

* Production points to code versions of a specific color

« Staging environment points to the latest version of each
module
— Deploy new code to non-production color
— Test & validate
— Switch to new deployment color

« Simplifies rollback

December 10, 2018 ©2017-2018 Paul Krzyzanowski

The Eight Fallacies of
Distributed Computing

Peter Deutsch

Essentially everyone, when they first build a distributed application, makes the
following eight assumptions. All prove to be false in the long run and all cause big
trouble and painful learning experiences.

1. The network is reliable

2. Latency is zero

3.Bandwidth is infinite

4. The network is secure

5. Topology doesn't change

6. There is one administrator

7. Transport cost is zero

8. The network is homogeneous

For more details, read the article by Arnon Rotem-Gal-Oz

© 2017 Paul Krzyzanowski

-

The end

December 10, 2018 ©2017-2018 Paul Krzyzanowski

