Distributed Systems

Assignment 3 Review

David Domingo
Paul Krzyzanowski

Rutgers University

Fall 2018

.

October 22, 2018 © 2018 Paul Krzyzanowski

Paxos summary

Paxos is a fault-tolerant distributed consensus algorithm
— A collection of systems have to agree on exactly one proposed value

Proposers

— Receive requests from clients

— Send them to acceptors to choose requested values

— We typically choose one proposer to handle all requests, called a Leader

Acceptors

— Respond to requests from proposers
— Store state about the highest accepted proposal

Learners
— Propagate info about the value chosen by acceptors
— (We often ignore this and let the Leader do the work)

October 22, 2018 © 2018 Paul Krzyzanowski

-

Paxos algorithm summary

* Prepare Phase

— Proposer
+ Contact all acceptors with a PREPARE(proposal #, value) message

— Acceptor
» Ifthis is the highest or only proposal # the acceptor has seen:
— Acceptor promises it will not accept proposals with smaller numbers
— Save the proposal # and value (in case another prepare message comes later).
+ If the acceptor already accepted a proposal (see phase 2)
— Acceptor returns the highest proposal # and value it has accepted

* Accept Phase

— Proposer
« Waits for responses from a majority of acceptors — checks if any acceptors returned an accepted proposal
— If yes - picks value associated with the highest proposal # returned from any acceptor
— If no - use the original value that was proposed
— Send an ACCEPT(proposal #, value’) message to all acceptors
— Acceptor
* Compares received proposal # with the highest # it has seen

— Reject proposal if the received proposal is # not as high
— Otherwise accept proposal — remember proposal # and value in case we need to return it if we receive a
PREPARE message from someone else

* Return the current value of the highest proposal that was accepted
— Proposer

* Receive majority of responses from a majority of acceptors.
+ See if any have been rejected. If rejected, the proposer would have to start again with a higher proposal #

« If all accepted the request, then we are done.

.

October 22, 2018 © 2018 Paul Krzyzanowski

p
Paxos summary

Two-phase protocol: started by a proposer

 Phase 1: prepare
Send prepare request to all acceptors
— Acceptor will return the information about the highest proposal it has
accepted (if any)

 Allows proposer to find out if any other values have been chosen so we use that
value instead

— Acceptor promises it will never accept a proposal number with a lower
request (blocks older proposals)

* Phase 2: accept
— A proposer collects responses from all live acceptors

— If a majority of acceptors respond that they agree on this value, then it is
chosen by the proposer

— Proposer sends an ACCEPT message to all acceptors

.

October 22, 2018 © 2018 Paul Krzyzanowski

-
Paxos summary

Why use proposal numbers?

« If all requests come from one proposer (leader) then Paxos is trivial
— We would simply send a message to all the acceptors we can reach
— Get a response from the majority

» Aleader can fail — Paxos handles the case where multiple proposers
might think they are the leader
— Multiple proposers will not lead to inconsistencies
— Each proposer uses a unique proposal #

— Proposals are ordered: newer (higher #) proposals take precedence over
older ones

— Acceptor tells it whether it has already accepted a higher numbered
proposal

« Why do we need a majority of acceptors?

— Once a value has been accepted by a majority of acceptors, if any
acceptor crashes, at least one acceptor still has the latest (highest) state.

\

October 22, 2018 © 2018 Paul Krzyzanowski

-

Question 1 (Paxos)

Why can an acceptor not necessarily accept the first value it receives
but must sometimes accept different values?

[answer from the John Ousterhout video]

There might not be a majority of proposed values to determine a winner.
For example:

- 2 acceptors might have value A
- 2 acceptors might have value B no majority!
- 1 acceptor might have value C

Therefore, there won'’t be one value that all servers can agree on as the majority value.

= An acceptor has the right to change its mind.

A value that has been accepted does not mean it is ultimately chosen. It just means that it's the
highest numbered proposer that one acceptor has seen so far. It is only chosen once we have a
majority of acceptors.

First check for existing proposed values. Reject older proposals (each proposal has a proposal
number) received after newer ones.

October 22, 2018 © 2018 Paul Krzyzanowski

p
Question 1 — Discussion

Why can an acceptor not necessarily accept the first value it receives
but must sometimes accept different values?

If each acceptor just accepts a proposed value, it is possible that no
acceptors get a majority of any proposed value

— Acceptors therefore have to be able to accept different values — they may
have to change their mind

— They cannot accept every proposed value because then multiple values
could be chosen

— Once a value has been chosen, a new proposer has to abandon its value
and use a previously chosen value

* We need a 2 phase protocol: phase 1 asks the acceptor for chosen values before
proposing a value

* Any competing proposals have to be aborted

« This is done by forcing an order: higher numbered (newer) proposals will take
precedence over lower-numbered (older) proposals

.

October 22, 2018 © 2018 Paul Krzyzanowski

[Question 2 (Paxos)

When does a proposer have to change the value that it is proposing during the
Paxos consensus protocol?

« A proposer sends a value to an acceptor (with a prepare message)
— Multiple proposers may do this concurrently and send different values

» Acceptors respond to a prepare request from a proposer with the highest
numbered proposal that they accepted if another proposal has already been
accepted

— If multiple requests came in concurrently, an acceptor may have seen a higher number. It
responds to each proposer with that higher number

« A proposer must ask for that value to be accepted even if it initially proposed
a different value.

— The proposer is the one who figures out the highest accepted proposal from all acceptors
and propagates that information to all acceptors.

— This does not violate the requirement of consensus since the algorithm selects one of the
proposed values.

.

October 22, 2018 © 2018 Paul Krzyzanowski 8

[Question 3 (Raft)

Raft uses a single leader (one server is elected as a leader).
Explain how Raft performs leader election.

Short answer:

Each candidate starts a random timer before proposing
itself as a leader & sending election messages to the
group.

If you receive a leader proposal message and you have not
yet proposed yourself, you will acknowledge that candidate

and not vote for yourself.

If a candidate gets majority votes, it becomes the leader.

October 22, 2018 © 2018 Paul Krzyzanowski 9

[Question 3 — Longer Answer

Raft uses a single leader (one server is elected as a leader). Explain how Raft
performs leader election.

To start an election, a candidate votes for itself and sends a request vote
message to all other servers. Other servers that have not yet voted and receive
the request acknowledge the candidate to be the leader. Each server that
receives a request will vote for at most one candidate.

If the candidate receives a majority of acknowledgements, it becomes the leader.

If the candidate does not win or lose an election, it times out and starts a new
election. Randomized timeouts are used to ensure that split votes happen rarely.

To support recovery and avoid stale state, a “term number” is incremented after
each election

If the candidate receives a heartbeat from another server and that leader’s
term # is at least as large as the candidate’s current term, then the candidate
recognizes the leader as legitimate and becomes a follower.

October 22, 2018 © 2018 Paul Krzyzanowski 10

[Question 4 (Raft)

An elected leader takes client requests. Each request is essentially a log entry

that will be replicated among the servers. When is a log entry committed in
Raft?

A log entry is committed once the leader that created the
entry has replicated it on a majority of the servers.

Committed means that the log entry is applied to the state
machine.

.

October 22, 2018 © 2018 Paul Krzyzanowski 1

.

The End

October 22, 2018

© 2018 Paul Krzyzanowski

12

