
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 2: Part 1
 Point-to-point communication:
 Remote Procedure Calls

© 2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 2

IP Communication

The Internet

September 18, 2023 CS 417 © 2022-2023 Paul Krzyzanowski 3

ARPANET - 1972ARPANET – December 1969

The Internet: Key Design Principles
• Support interconnection of networks
– No changes needed to the underlying physical network
– IP is a logical network

• Assume unreliable communication
– If a packet does not get to the destination, software on the receiver will have

to detect it and the sender will have to retransmit it

• Routers connect networks
– Store & forward delivery

• No global (centralized) control of the network

September 18, 2023 CS 417 © 2022-2023 Paul Krzyzanowski 4

Routers tie LANs together into one Internet

Tier 3 ISP

Tier 2 ISP

Tier 1 ISP

Tier 1 ISP Tier 2 ISP

A packet may pass through many networks – within and between ISPs
September 18, 2023 CS 417 © 2022-2023 Paul Krzyzanowski 5

Internet Protocol
A set of protocols designed to handle the interconnection of many local
and wide-area networks that together comprise the Internet

IPv4 & IPv6: network layer
– Other IP-based protocols include TCP, UDP, RSVP, ICMP, etc.
– Relies on routing from one physical network to another
– IP is connectionless

No state needs to be saved at each router

– Survivable design: support multiple paths for data
… but packet delivery is not guaranteed!

September 18, 2023 CS 417 © 2022-2023 Paul Krzyzanowski 6

IP addressing
• Each network endpoint has a unique IP address
– No relation to an ethernet address
– IPv4: 32-bit address www.rutgers.edu = 128.6.46.88

– IPv6: 128-bit address www.google.com = 2607:f8b0:4004:811::2004

• Data is broken into packets
– Each IP packet contains
• source & destination IP addresses
• Header checksum
• Data

IP gives us machine-to-machine communication

September 18, 2023 CS 417 © 2022-2023 Paul Krzyzanowski 7

Communication over IP

• TCP: Reliable, in-order byte stream

• UDP: Unreliable, message stream (order not guaranteed)

Data Link Layer (2)

Network Layer (3)

Transport Layer (4)

Ethernet, Wi-Fi, DOCSIS, ATM, Frame Relay, …

Internet Protocol: IPv4, IPv6

TCP, UDP

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 8

Transport Layer
• We want to communicate between applications

• The transport layer gives us logical "channels" for communication
– Processes can write to and receive from these channels

• Two transport layer protocols in IP are TCP & UDP
– A port number identifies a unique channel on each computer
• 16-bit number (range 0…65535)

September 18, 2023 CS 417 © 2022-2023 Paul Krzyzanowski 9

TCP: Transmission Control Protocol
• Connection-oriented service – operating system keeps state
• Full-duplex connection: both sides can send messages over

the same link
• Reliable data transfer: the protocol handles retransmission
• In-order data transfer: the protocol keeps track of sequence

numbers
• Flow control: receiver stops sender from sending too much

data
• Congestion control: “plays nice” on the network – reduce

transmission rate
• 20-byte header

UDP: User Datagram Protocol
• Connectionless service: lightweight transport layer

over IP
• Data may be lost
• Data may arrive out of sequence
• Checksum for corrupt data: operating system drops

bad packets
• 8-byte header

IP transport layer protocols
IP gives us two transport-layer protocols for communication

September 18, 2023 CS 417 © 2022-2023 Paul Krzyzanowski 10

Byte stream interface Message stream interface

TCP Upsides & Downsides
• Upsides – huge!
– In-order, reliable byte streams
– Congestion control (plays nice in sharing the network), flow control (avoids queue overflow)

• Downsides
– Storing & managing state in the operating system
• Sequence numbers, Buffering out-of-order data, Acknowledgments
• Significant kernel memory use when lots of connections

– Congestion control
• Slows down transmission but doesn’t always accurately reflect network congestion (based on packet loss)

– Recovery
• All state is lost if a system goes down – connections will need to be re-established

– Increased latency
• Session setup
• Data may not be immediately transmitted or presented to the receiving app
– Nagle’s algorithm: delay sending to see if more bytes need to be sent to avoid sending lots of small packets

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 11

UDP Upsides & Downsides
• Upsides
– Fewer kernel resources
– No connection setup overhead – useful data can be sent with 1st packet
– Received data immediately sent & delivered to the application
• No delay in sending messages

– No state recovery – traffic can be easily redirected to a standby system

• Downsides
– Delivery & message order not guaranteed
• Usually perfect on local area networks; less reliable on wide area networks

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 12

Identifying Sessions: UDP
All traffic goes to a socket that reads from a host address & port

Host 1

Host 2

Host 3

Host 4
s1

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 13

A server creates a socket to receive messages on a specific port number.
Packets sent from different processes and/or systems

all arrive on the same socket on the server

Identifying Sessions: TCP
Unique channels identified by
– { Remote host, Remote port, Local host, Local port }
– One socket for listening for new connections on a local host, port
– Separate communication socket for each “connection”

Host 1

Host 2

Host 3

Host 4

s1

s2

s3

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 14

A server creates a socket to listen for connections on a specific port number.
Each connection results in a new socket at the server

Protocols
• Set of rules (& customs) for communicating

• Exist at different levels
Humans:
– Body language
– Voice frequency, phonemes, language
– Phrases & responses
Computers:
– Exist at each layer of the network stack
– Meaning of bytes
– Sequence of request & response messages

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 15

Parlez-vous français?

¿Hablas español?

Loquerisne Latine?

Facio, ita!

Software interaction model
• Socket API: all we get from the OS to access the network

• Socket = distinct end-to-end communication channels

read/write interface
• Line-oriented, text-based protocols common
– Not efficient but easy to debug & use

16September 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Sample SMTP Interaction

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 17

$ telnet porthos.rutgers.edu 25
Trying 128.6.25.90...
Connected to porthos.rutgers.edu.
Escape character is '^]'.
220 porthos.cs.rutgers.edu ESMTP Postfix (Ubuntu)
HELO poopybrain.com
250 porthos.cs.rutgers.edu
MAIL FROM: <paul@poopybrain.com>
250 2.1.0 Ok
RCPT TO: <pxk@cs.rutgers.edu>
250 2.1.5 Ok
DATA
354 End data with <CR><LF>.<CR><LF>
From: Paul Krzyzanowski <myname@somewhere.edu>
Subject: test message
Date: Mon, 30 Sep 2023 17:00:16 -0500
To: Whomever <testuser@pk.org>

Hi,
This is a test
.
250 2.0.0 Ok: queued as 82D315F7C5
quit
221 2.0.0 Bye
Connection closed by foreign host.

This is the message body.
Headers may define the structure of the
message but are ignored for delivery.

SMTP = Simple Mail Transfer Protocol

Sample HTTP Interaction

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 18

$ telnet www.google.com 80
Trying 172.217.12.196...
Connected to www.google.com.
Escape character is '^]'.
GET /index.html HTTP/1.1
HOST: www.google.com
Accept: image/gif, image/jpeg, */*
Accept-Language: en-us
User-Agent: Mozilla/4.0

HTTP/1.1 200 OK
Date: Sun, 29 Jan 2023 22:58:25 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
...
Transfer-Encoding: chunked

5584
<!doctype html><html itemscope=""
itemtype="http://schema.org/WebPage"
lang="en"><head>
 …
 …

First part of the response –
HTTP headers

HTTP = Hypertext Transfer Protocol

Second part of the response –
HTTP content

Problems with the sockets API
The sockets interface forces a read/write mechanism

Programming is often easier with a functional interface

To make distributed computing look more like centralized computing,
I/O (read/write) is not the way to go

19September 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Client Server

Send a bunch of bytes

Receive a bunch of bytes

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 20

Remote Procedure Calls (RPC)

RPC
1984: Birrell & Nelson
– Mechanism to call procedures on other machines

Remote Procedure Call

Goal: it should appear to the programmer that a
normal call is taking place

21September 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Implementing RPC
No architectural support for remote procedure calls

Simulate it with tools we have (local procedure calls)

Simulation makes RPC a
 language-level construct

instead of an
 operating system construct

The OS gives
us sockets

The compiler creates
code to send

messages to invoke
remote functions

22September 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Implementing RPC
The trick:

Create stub functions
to make it appear to the user that the call is local

On the client
 The stub function (proxy) has the function’s interface
 Packages parameters and calls the server

On the server
 The stub function (skeleton) receives the request and calls the local function

23September 18, 2023 CS 417 © 2023 Paul Krzyzanowski

client server

Stub functions

network routines

server functions

server stub
(skeleton)

network routines

1. Client calls stub (params on stack)

client functions

client stub
(proxy)

OS OS

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 24

Stub functions

server functions

server stub
(skeleton)

network routines

2. Stub marshals params to network message

client functions

client stub
(proxy)

network routines

Marshaling = put parameters in a form suitable for transmission over a network (serialized)
along with information about the function (function/method identifier, object ID, version, …)

OS OS

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 25

client server

Stub functions
3. Network message sent to server

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines
OS OS

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 26

client server

Stub functions
4. Receive message: send it to server stub

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines
OS OS

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 27

client server

Stub functions
5. Unmarshal parameters, call server function

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines
OS OS

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 28

client server

Stub functions
6. Return from server function

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines
OS OS

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 29

client server

Stub functions
7. Marshal return value and send message

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines
OS OS

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 30

client server

Stub functions
8. Transfer message over network

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines
OS OS

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 31

client server

Stub functions
9. Receive message: client stub is receiver

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines
OS OS

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 32

client server

Stub functions
10. Unmarshal return value(s), return to client code

client functions

network routines

server functions

server stub
(skeleton)

network routines

client stub
(proxy)

OS OS

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 33

A client proxy looks like the remote function

• Client proxy (stub) has the same interface as the remote function

• Looks & feels like the remote function to the programmer
– But its function is to
• Marshal parameters
• Send the message
• Wait for a response from the server
• Unmarshal the response & return the appropriate data
• Generate exceptions if problems arise

34September 18, 2023 CS 417 © 2023 Paul Krzyzanowski

RPC Benefits
• RPC gives us a procedure call interface

• Writing applications is simplified
– RPC hides all network code into stub functions
– Application programmers don’t have to worry about details
• Sockets, port numbers, byte ordering

36September 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Implementation challenges

37September 18, 2023 CS 417 © 2023 Paul Krzyzanowski

RPC Challenges
• Parameter passing
– Pass by value or pass by reference?
– All data must be sent in a pointerless representation

• Service binding
– How do we register & locate the server endpoint?
– Central database listing all services and their corresponding host & port #?
– Or a database of services running on each server?

• Transport protocol
– TCP? UDP? Either? HTTP/HTTPS over TCP?

• Error handling
– Opportunities for failure

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 38

Semantics of Remote Procedure Calls
• Local procedure call: executed exactly once each time it's invoked

• Most RPC systems will offer either
– at least once semantics (client might retry)
– or at most once semantics (client will not retry)

• Decide which to use based on the application
– idempotent functions: may be called any number of times without harm
– non-idempotent functions: those with side-effects

• Ideally – design your application to be idempotent … and stateless
– Then you don't worry about retries
– Not always easy!
– That makes it easy to enable other servers to handle the request

39September 18, 2023 CS 417 © 2023 Paul Krzyzanowski

More Challenges
Performance
– RPC is slower … a lot slower than a local procedure call (why?)

Security
– messages may be visible over network – do we need to hide them?
– Authenticate client?
– Authenticate server?

40September 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Programming with RPC
Language support
– Many programming languages have no language-level concept of remote procedure calls

(C, C++, Java <J2SE 5.0, …)
• These compilers will not automatically generate client and server stubs

– Some languages have support (e.g., reflection) that enables RPC packages
(Java, Python, Haskell, Go, Erlang)
• But we may need to support heterogeneous environments

(e.g., a Java client communicating with a Python service)

Common solution
– Interface Definition Language (IDL): describes remote procedures
– A separate compiler generates client & server stubs

41September 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Interface Definition Language (IDL)
• Allow programmer to specify remote procedure interfaces

(names, parameters, return values)

• IDL compiler can use this to generate client and server stubs
– Marshaling code
– Unmarshaling code
– Network transport routines
– Conform to defined interface

• An IDL looks similar to function prototypes

September 18, 2023 CS 417 © 2023 Paul Krzyzanowski 42

RPC compiler

IDL IDL
compiler

client code (main)

server functions

client stub

headers

server skeleton

serialization

serialization compiler

compiler server

client

Code you write

Code RPC compiler generates

43September 18, 2023 CS 417 © 2023 Paul Krzyzanowski

Sometimes called a
protocol compiler,
an RPC compiler, or a
generator

Writing the program
• Client code has to be modified
– Initialize RPC-related options
• Identify transport type
• Locate server/service

– Handle failure of remote procedure calls

• Server functions
– Generally, need little or no modification
– Need a container that runs those functions
• Either the user writes a server that registers the functions and starts a listener or the

RPC complier creates one

44September 18, 2023 CS 417 © 2023 Paul Krzyzanowski

The End

September 18, 2023 45CS 417 © 2023 Paul Krzyzanowski

