
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 4: Part 1
 Group Communication

© 2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Modes of communication
• One-to-One
– Unicast
• 1«1
• Point-to-point

– Anycast
• 1®nearest 1 of several identical nodes
• Introduced with IPv6; used with BGP routing protocol

• One-to-many
– Broadcast
• 1®all

– Multicast
• 1®many = group communication

2CS 417 © 2023 Paul Krzyzanowski October 2, 2023

Groups
Groups allow us to deal with a

collection of processes as one abstraction

Send a message to one entity
– Deliver to the entire group

Groups are dynamic
– Created and destroyed
– Processes can join or leave
• May belong to 0 or more groups

3CS 417 © 2023 Paul Krzyzanowski

Primitives:
• create_group*
• delete_group*
• join_group
• leave_group
• send_to_group
• query_membership*
*Optional

October 2, 2023

Design Issues
• Closed vs. Open
– Closed: only group members can send messages

• Peer vs. Hierarchical
– Peer: each member communicates with the entire group
– Hierarchical: go through coordinator(s), which relay messages to the group
• Root coordinator: forwards the message to appropriate subgroup coordinators

• Managing membership & group creation/deletion
– Distributed vs. centralized

• Leaving & joining — must be synchronous

• Fault tolerance & message order
– Do we need reliable message delivery? What about missing or unreachable group members?
– Do messages need to be received in the order they were sent?

4CS 417 © 2023 Paul Krzyzanowski October 2, 2023

Failure considerations
The same things bite us with unicast communication

• Crash failure
– Process stops communicating

• Omission failure (typically due to network)
– Send omission: A process fails to send messages
– Receive omission: A process fails to receive messages

• Byzantine failure
– Some messages are faulty

• Partitions
– The network may get segmented, dividing the

group into two or more unreachable sub-groups
– Some group members may not get the message

CS 417 © 2023 Paul Krzyzanowski 5October 2, 2023

Failure considerations
The same things bite us with unicast communication … with extra problems

• Client dies before the multicast is complete
– A set of group members might not get the message

• Server dies during a multicast
– It may not receive the message while other group members do
– Receive omission: A process fails to receive messages

• A member leaves or joins a group during a multicast
– Will it get the message?

CS 417 © 2023 Paul Krzyzanowski 6October 2, 2023

Implementing
Group Communication Mechanisms

CS 417 © 2023 Paul Krzyzanowski 7October 2, 2023

Hardware multicast
If we have hardware support for multicast
– Group members listen on the MAC address

listen multicast addr = m1

listen multicast addr = m1

listen multicast addr = m1

send addr=m1

8CS 417 © 2023 Paul Krzyzanowski October 2, 2023

Broadcast: Diffusion Group
Diffusion group: broadcast to all clients & then filter
– Software filters incoming broadcast or multicast address
– May need to use auxiliary group ID to identify the group

(not in the network address header)

broadcast(id=m)
accept id=m

accept id=m

accept id=m

discard id=m

discard id=m

9CS 417 © 2023 Paul Krzyzanowski October 2, 2023

Hardware multicast & broadcast
• Ethernet & Wi-Fi support both multicast & broadcast

• Limited to local area networks

CS 417 © 2023 Paul Krzyzanowski 10October 2, 2023

Software implementation: multiple unicasts
Sender knows group members

listen local addr = a2

listen local addr = a3

listen local addr = a5

send(a2)

send(a3)

11CS 417 © 2023 Paul Krzyzanowski

send(a5)

October 2, 2023

Software implementation: hierarchical
Multiple unicasts via group coordinator
– Coordinator knows group members
– Coordinator iterates through group members
– May support a hierarchy of coordinators

listen local addr = a2

listen local addr = a3

listen local addr = a5

coordinator
send(a2)

send(a3)

send(a5)send(c)

12CS 417 © 2023 Paul Krzyzanowski October 2, 2023

Publish-Subscribe (Pub/Sub)
Communication pattern – one of several for group communication
• Publishers & subscribers
– Publishers: send messages — typically to a topic
– Subscribers: receive messages that match certain attributes (topics)

• Message broker – service that filters, routes, & queues messages
(also known as a message bus or event bus)

CS 417 © 2023 Paul Krzyzanowski 13

Pub

Pub

Sub

Sub

SubPub

Pub
Topic A

Topic B

Topic C

msg

msgmsgmsgmsg

msg

October 2, 2023

Publish-Subscribe (Pub/Sub)
The message broker is a service that is responsible for
– Message queuing
– Filtering
– Reliability (of itself and, in some cases, dealing with dead subscribers)
– Delivery guarantees and message ordering
– Scaling to handle message volume and clients

CS 417 © 2023 Paul Krzyzanowski 14

Pub

Pub

Sub

Sub

SubPub

Pub
Topic A

Topic B

Topic C

msg

msgmsgmsgmsg

msg

October 2, 2023

Reliability of multicasts

CS 417 © 2023 Paul Krzyzanowski 15October 2, 2023

Unreliable multicast (best effort)
• Basic multicast

• Hope it gets to all the members

• Best-effort delivery
– The system (computers & network) tries to deliver messages to their

destinations but does not retransmit corrupted or lost data

16CS 417 © 2023 Paul Krzyzanowski October 2, 2023

Reliable multicast
• All non-faulty group members will receive the message
– Assume the sender & recipients will remain alive
– Network may have glitches
• Try to retransmit undelivered messages … but eventually give up

– It’s OK if some group members don’t get the message

• Acknowledgments
– Send a message to each group member
– Wait for acknowledgment from each group member
– Retransmit to non-responding members
– Subject to feedback implosion in group communication
• Feedback implosion = a system sends one message but gets many back in response.

E.g., send a message to a group of 1,000 members and get back 1,000 acknowledgments.

CS 417 © 2023 Paul Krzyzanowski 17October 2, 2023

Optimizing Acknowledgments
• Easiest thing is to wait for an ACK before sending the next message
– But that incurs a round-trip delay

• Optimizations
– Pipelining
• Send multiple messages – receive ACKs asynchronously
• Set timeout – retransmit message for missing ACKs

– Cumulative ACKs
• Wait a little while before sending an ACK
• If you receive other messages, then send one ACK for everything

– Piggybacked ACKs
• Send an ACK along with a return message

– Negative ACKs
• Receiver requests retransmission of a missed message

TCP (not multicast) does the first three of these … but with groups we must do this for each recipient

CS 417 © 2023 Paul Krzyzanowski 18October 2, 2023

Reliable multicasts – hierarchical feedback control
Hierarchical feedback control
– A technique for avoiding feedback implosion

• Partition group into subgroups, organized into a tree

• Sender is in the root of the tree (or sends to the root)
– Each subgroup has a local coordinator – responsible for retransmissions

within the subgroup

CS 417 © 2023 Paul Krzyzanowski 19October 2, 2023

Scaling reliable multicasts via negative acknowledgments
Negative acknowledgment – sent by a receiver if it misses a sequence #
– Sender attaches a sequence # to each message
– Sender must keep a buffer of old messages (possibly forever)
• Realistically, keep either a fixed-size buffer or have a time limit

– Need to account for the receiver not sending a negative ACK because it is dead
• E.g., Send periodic are-you-alive messages to check that receivers are alive

Scalable Reliable Multicasting: feedback suppression
– Send only negative acknowledgments
• But multicast them – that way, other receivers will not send a NACK for the same message
• Use a small random delay before sending the NACK to avoid lots of feedback msgs
• Every group member is interrupted with NACK messages

CS 417 © 2023 Paul Krzyzanowski 20October 2, 2023

Atomic multicast
Atomicity – “all or nothing” property

A message sent to a group arrives at all group members
If it fails to arrive at any member, no member will process it

Problems
– Unreliable network
• Each message should be acknowledged
• Acknowledgments can be lost

– Recipient might die
– Message sender might die

21CS 417 © 2023 Paul Krzyzanowski October 2, 2023

Achieving atomicity
• General idea
– Ensure that every recipient acknowledges receipt of the message
– Only then allow the application to process the message
– If we give up on a recipient

 then no recipient can process that received message

• Easier said than done!
– What if a recipient dies after acknowledging the message?
• Is it obligated to restart?
• If it restarts, will it know to process the message?

– What if the sender (or coordinator) dies partway through the protocol?

CS 417 © 2023 Paul Krzyzanowski 22October 2, 2023

Achieving atomicity – example 1
Retry through network failures & system downtime
• Sender & receivers maintain a persistent log
• Each message has a unique ID so we can discard duplicates

Sender
– Write the message to log
– Send the message to all group members
– Wait for acknowledgment from each

group member
– Write acknowledgment to log
– If timeout on waiting for an acknowledgment,

retransmit to group member

NEVER GIVE UP!

Receiver
– Log received non-duplicate message to the

persistent log
– Send acknowledgment

Assume that dead senders or receivers will be rebooted and can restart where they left off

October 2, 2023 CS 417 © 2023 Paul Krzyzanowski 23

Achieving atomicity – example 2
Redefine the group
• If some members failed to receive the message:
– Remove the failed members from the group
– Then allow existing members to process the message

• But still need to account for the death of the sender
– Surviving group members may need to take over to ensure all current group members

receive the message

• This is the approach used in virtual synchrony

CS 417 © 2023 Paul Krzyzanowski 24October 2, 2023

Message ordering

CS 417 © 2023 Paul Krzyzanowski 25October 2, 2023

Consistent (Good) Ordering

message a

a

order received

a, b

a, b

message b

b

26CS 417 © 2023 Paul Krzyzanowski October 2, 2023

Single sender multicasting a stream of messages

Inconsistent (Bad) Ordering

message a

a

order received

a, b

b, a

message b

b

27CS 417 © 2023 Paul Krzyzanowski October 2, 2023

Single sender multicasting a stream of messages

Consistent (Good) Ordering

Process 0

Process 1

message a

a

message b
b

order received

a, b

a, b

28CS 417 © 2023 Paul Krzyzanowski October 2, 2023

Multiple senders multicasting a stream of messages

Inconsistent (Bad) Ordering

Process 0

Process 1

message a

a

message b
b

order received

a, b

b, a

29CS 417 © 2023 Paul Krzyzanowski

Consistent (good) ordering = All group members will receive the messages in the same order

Inconsistent (bad) ordering = Some group members receive the messages in a different order than others

October 2, 2023

Multiple senders multicasting a stream of messages

Sending vs. Receiving vs. Delivering
• After a message is sent, it arrives at its destination and is received by

the operating system

• A multicast receiver algorithm decides when to deliver a message to
the process
• A received message may be:
– Delivered immediately

(put on a delivery queue that the process reads)

– Placed on a hold-back queue
(because we need to wait for an earlier message)

– Rejected/discarded
(a duplicate or earlier message that we no longer want)

30CS 417 © 2023 Paul Krzyzanowski October 2, 2023

Sending, delivering, holding back

sender receiver

Multicast sending
algorithm

Multicast receiving
algorithm

hold-back
queue

delivery
queue

discard

?
message transmission

deliver

31CS 417 © 2023 Paul Krzyzanowski

send

receive

October 2, 2023

Global time ordering
• All messages are delivered in exact order sent

• Assumes two events never happen at the exact same time!

• Difficult (impossible) to achieve
– Multiple events may have the same timestamp
– Clocks may not be perfectly synchronized
– A process has no way of knowing it is still missing messages

• Not a viable approach

CS 417 © 2023 Paul Krzyzanowski 32October 2, 2023

Total ordering
• Consistent ordering at all receivers
• All messages are delivered at all group members in the same order
– They are sorted into the same sequence before being placed on the delivery queue

Implementation:
• Attach unique totally sequenced message ID
• Receiver delivers a message to the application only if it has received all messages with a smaller ID
• Otherwise, the message sits in the hold-back queue

1. If a process sends m before m′
then any other process that delivers m′ will have delivered m.

2. If a process delivers m′ before m″ then every other process will
have delivered m′ before m″.

33CS 417 © 2023 Paul Krzyzanowski October 2, 2023

Causal ordering
Also known as partial ordering
Messages sequenced by only if they are causally related
(e.g., by Lamport or Vector timestamps)

If message m′ is causally dependent on message m,
all processes must deliver m before m′

If multicast(G, m) → multicast(G, m′)
then every process that delivers m′ will have delivered m

34CS 417 © 2023 Paul Krzyzanowski October 2, 2023

Causal ordering example

CS 417 © 2023 Paul Krzyzanowski 35

P0

P1

P2

m0

m1

time

P0

P1

P2

m0

m2 time

m1 is causally dependent on the receipt of m0
⇒ m1 must be delivered only after m0 has been delivered

m0 and m2 have no causal relationship (they are concurrent)
⇒ Any process can deliver these messages in any order

{ m0, m1 }

{ m0, m1 }

{ m0, m1 }

{ m0, m2 }

{ m2, m0 }

{ m2, m0 }

C
au

sa
l

M
es

sa
ge

s
C

on
cu

rre
nt

M
es

sa
ge

s

hold back

C
AU

SA
L

C
O
N
C
U
R
R
EN

T This is OK

This is OK too

October 2, 2023

Causal ordering – implementation

CS 417 © 2023 Paul Krzyzanowski 37

Pa Pb

(M, Va)

Implementation: Pa receives a message from Pb

• Each process keeps a precedence vector

• Vector is updated on multicast send and deliver (not receive) events
Each position in the vector = sequence number of the latest message from the
corresponding group member that causally precedes the event: [P0, P1, P2, …]

Precedence Vector Va[] Precedence Vector Vb[]

October 2, 2023

Causal ordering – implementation
Algorithm
– When Pa sends a message, it increments its own entry and sends the vector

Va[a] = Va[a] + 1 – where a is the index for process Pa
Send Va with the message

– When Pb receives a message from Pa
1. Check that the message arrived in sequential order from Pa:
 Va[a] == Vb[a] + 1 ?
2. Check that the message does not causally depend on messages that Pb has not yet received

from other processes:
 ∀i, i ≠ a: Va[i] ≤ Vb[i] ?

The sequence # of every other message in Pa must be ≤ the corresponding one in Pb

• If both conditions are satisfied, Pb will deliver the message to the application:
 At Pb, update the precedence vector: Vb[a] = Vb[a]+1

• Otherwise, hold the message until these conditions are satisfied
CS 417 © 2023 Paul Krzyzanowski 38October 2, 2023

Causal Ordering: Example

CS 417 © 2023 Paul Krzyzanowski 39

Do
n’

t d
el

ive
r t

hi
s!

P0

P1

P2

m0

m1

time

{ m0, m1 }

{ m0, m1 }

{ m1, m0 }

P2 receives message m1 from P1 with V1=(1,1,0)
(1) Is this in sequential order from P1?
 Compare current V on P2: V2=(0,0,0) with received V from P1, V1=(1,1,0)
 Yes: V2[1] == 0, received V1[1] == 1 ⇒ sequential order – message 1 follows message 0
(2) Is V1[i] ≤ V2[i] for all other i?
 Compare the same vectors: V1=(1,1,0) vs. V2=(0,0,0)
 No, because (V1[0] == 1) > (V2[0] == 0)
 – this means P2 has seen msg #1 from P0 that P2 has not yet received
Therefore: hold back m1 at P2

(1,0,0)

(1,0,0)

(1,1,0)

(1,1,0)
(0,0,0)

(0,0,0)

(0,0,0)

October 2, 2023

P0

P1

P2

m0

m1

time

{ m0, m1 }

{ m0, m1 }

{ m1, m0 }

(1,0,0)

(1,0,0)

(1,1,0)

(0,0,0)

(0,0,0)

(0,0,0)

Causal Ordering: Example

CS 417 © 2023 Paul Krzyzanowski 40

Next, P2 receives message m0 from P0 with V=(1,0,0)
(1) Is m0 in sequential order from P0?
 Compare current V on P2: V2=(0,0,0) with received V from P0, V0=(1,0,0)
 Yes: V2[0] = 0, received V0[0] = 1 ⇒ sequential order
(2) Is V0[i] ≤ V2[i] for all other i?
 Yes. Element 0: (0 ≤ 0), Element 1: (0 ≤ 0)

Deliver m0 on P2 and update precedence vector on P2 from (0, 0, 0) to (1, 0, 0)
This indicates that we delivered message 1 from P0
Now check hold-back queue. Can we deliver m1?

(1,1,0) ←holding m1

(1,0,0)m1

October 2, 2023

Causal Ordering: Example

CS 417 © 2023 Paul Krzyzanowski 41

P0

P1

P2

m0

m1

time

{ m0, m1 }

{ m0, m1 }

{ m1, m0 }

Check the message in the hold-back set
(1) Is the held-back message m1 in sequential order from P0?
Compare element 1 on current V on P2: V2 == (1,0,0) with held-back V from P0, V0 == (1,1,0)
Yes: (current V2[1] == 0) vs. (received V1[1] == 1) ⇒ sequential

(2) Is V0[i] ≤ V2[i] for all other i?
 Now yes. (V0[0] = 1) ≤ (V2[0] = 1) and element 2: (V0[2] = 0) ≤ (V2[2] = 0)

Deliver m1 on P2 and update the precedence vector on P2: V2 = (1, 1, 0)
This indicates that we delivered message 1 from P0 and message 1 from P1

(1,0,0)

(1,0,0)
(1,1,0)

(1,1,0)

(0,0,0)

(0,0,0)

(0,0,0)

(1,0,0)

October 2, 2023

Causal Ordering
• Causal ordering can be implemented more efficiently than total ordering:
– No need for a global sequencer

– Expect reliable delivery but we may not need to send immediate
acknowledgments

CS 417 © 2023 Paul Krzyzanowski 42October 2, 2023

Sync ordering
• Messages can be delivered in any order

• Special message type
– Synchronization primitive = barrier
– Ensure all pending messages are delivered before any additional (post-sync)

messages are accepted

CS 417 © 2023 Paul Krzyzanowski 43

If m is sent with a sync-ordered primitive and m’ is multicast, then
every process either delivers m before m′ or delivers m′ before m.

Multiple sync-ordered primitives from the same process must be
delivered in order.

October 2, 2023

Single Source FIFO (SSF) ordering
• Messages from the same source are delivered in the order they were

sent
– Message m must be delivered before message m’ iff m was sent before m’

from the same host

CS 417 © 2023 Paul Krzyzanowski 44

If a process issues a multicast of m followed by m′, then every
process that delivers m′ will have already delivered m.

October 2, 2023

Unordered multicast
• Messages can be delivered in different order to different members

• Order per-source does not matter

CS 417 © 2023 Paul Krzyzanowski 45October 2, 2023

Multicasting considerations

atomic

reliable

unreliable

unordered
syn

c
causal

total
global

Single-Source FIFO

Message Ordering

Re
lia

bi
lit

y

46CS 417 © 2023 Paul Krzyzanowski October 2, 2023

The End

47CS 417 © 2023 Paul Krzyzanowski October 2, 2023

