
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 5: Part 1
 Distributed Mutual Exclusion

© 2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the

permission of the copyright owner.

Process Synchronization

Techniques to coordinate execution among processes

– One process may have to wait for another

– Shared resource (critical section) may require exclusive access

Mutual exclusion

Examples • Update a fields in database tables

• Modify a shared file

• Modify file contents that are replicated on multiple servers

Easy to handle if the entire request is atomic

• Contained in a single message; server can manage mutual exclusion

Needs to be coordinated if the request comprises multiple messages

or spans multiple systems

October 9, 2023 CS 417 © 2023 Paul Krzyzanowski 2

Centralized Systems

Achieve mutual exclusion via:

– Test & set in hardware

– Semaphores

– Messages (inter-process)

– Condition variables

3CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

Distributed Mutual Exclusion

Goal:

Create an algorithm to allow a process to request and obtain exclusive access to

a resource that is available on the network

Required properties:

Safety: At any instant, only one process may hold the resource

Liveness: The algorithm should make progress; processes should not wait forever for

messages that will never arrive

Also desired:

Fairness: Each process gets a fair chance to hold the resource: bounded wait time &

 in-order processing of requests

CS 417 © 2023 Paul Krzyzanowski 4October 9, 2023

Assumptions

Resource identification

– Assume there is agreement on how a resource is identified

• Pass this identifier with each request

• e.g., lock("printer"), lock("table:employees"), lock("table:employees;row:15"), lock("shared_file.txt")

– We’ll just use request(R) to request exclusive access to resource R

• Process identification

– Every process has a unique ID (e.g., address.process_id)

• Reliable communication

– Network messages are reliable (may require retransmission of lost/corrupted messages)

• Live processes

– The processes in the system do not die

CS 417 © 2023 Paul Krzyzanowski 5October 9, 2023

Categories of mutual exclusion algorithms

• Centralized

– A process can access a resource because a central coordinator allowed it to

do so

• Token-based

– A process can access a resource if it is holding a token permitting it to do so

• Contention-based

– A process can access a resource via distributed agreement

6CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

Centralized algorithm

• Mimic single processor system

• One process elected as coordinator

P

Crequest(R)

grant(R)

1. Request resource

2. Wait for response

3. Receive grant

4. access resource

5. Release resource
release(R)

7CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

Centralized algorithm

If another process claimed the resource:

– Coordinator does not reply until release

– Maintain queue: service requests in FIFO order

P0

C

request(R)

grant(R)

P1
request(R)

R Request Queue

P1

8CS 417 © 2023 Paul Krzyzanowski

R in use by: P0

October 9, 2023

Centralized algorithm

If another process claimed the resource:

– Coordinator does not reply until release

– Maintain queue: service requests in FIFO order

P0

C

P1

P2

R Request Queue

P1

request(R)

P2

9CS 417 © 2023 Paul Krzyzanowski

R in use by: P0

October 9, 2023

Centralized algorithm

If another process claimed the resource:

– Coordinator does not reply until release

– Maintain queue: service requests in FIFO order

P0

C

release(R)

P1

P2

R Request Queue

P1

P2
grant(R)

10CS 417 © 2023 Paul Krzyzanowski

R in use by: P0R in use by: P1

P2

October 9, 2023

Centralized algorithm

If another process claimed the resource:

– Coordinator does not reply until release

– Maintain queue: service requests in FIFO order

P0

C

P1

P2

R Request Queue

P2

11CS 417 © 2023 Paul Krzyzanowski

R in use by: P1

release(R)

grant(R)R in use by: P2

October 9, 2023

Centralized algorithm

Benefits

• Fair: All requests are processed in order

• Easy to implement, understand, and verify

• Processes do not need to know group members – just the coordinator

• Efficiency: 2 messages to enter, 1 message to exit

Problems

• Process cannot distinguish being blocked from a dead coordinator

⇒ single point of failure

• Centralized server can be a bottleneck (unlikely!)

CS 417 © 2023 Paul Krzyzanowski 12October 9, 2023

Token Ring algorithm

Assume known group of processes

– Some ordering can be imposed on group (unique process IDs)

– Construct logical ring in software

– Process communicates with its neighbor

P0

P1

P2

P3

P4

P5

13CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

Token Ring algorithm

• Initialization

– Process 0 creates a token for resource R

• Token circulates around ring from Pi to P(i+1)mod N

• When process acquires token

– Checks to see if it needs the resource (the lock)

– No: send the token to its neighbor

– Yes: access resource & hold token until done

P0

P1

P2

P3

P4

P5

token(R)

14CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R

15CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access

resource R

16CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access

resource R

17CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R

18CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access

resource R

19CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access

resource R

20CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R

21CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access

resource R

22CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

Token Ring algorithm summary

• Safety: Only one process at a time has token

– Mutual exclusion guaranteed

• Liveness: Order well-defined (but not necessarily first-come, first-served)

– Starvation cannot occur

– Lack of FCFS ordering may be undesirable sometimes

• Delay:

– Request = 0…N-1 messages

– Release = 1 message

CS 417 © 2023 Paul Krzyzanowski 23October 9, 2023

Token Ring algorithm summary

Downsides/Problems

– Constant activity

– Token loss (e.g., process died)

• It will have to be regenerated

• Detecting loss may be a problem – is the token lost or in just use by someone?

– Process loss: what if you can't talk to your neighbor?

CS 417 © 2023 Paul Krzyzanowski 24October 9, 2023

Lamport’s Mutual Exclusion

Distributed algorithm using reliable multicast and logical clocks

• Messages are sent reliably and in single-source FIFO order

– Each message is time stamped with totally ordered (i.e., unique) Lamport timestamps

• Ensures that each timestamp is unique

• Every node can make the same decision by comparing timestamps

• Each process maintains a request queue

– Queue contains mutual exclusion requests

– Queues are sorted by message timestamps

CS 417 © 2023 Paul Krzyzanowski 25October 9, 2023

1. Request a Resource

Request a resource R:

• Process Pi sends Request(R, i, Ti) to all nodes

It also places the same request onto its own queue

• When a process Pj receives a request:

– It returns a timestamped Reply(Tj)

– Places the request on its request queue

Every process will have an identical queue
– Same contents in the same order

Unique Lamport timestamp

26

Process Time stamp

P4 1021

P8 1022

P1 3944

P6 8201

P12 9638

Sample request queue for R

Identical at each process

CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

Process ID

2. Use the Resource

Pi can access the resource if

• Pi has received Reply messages from every process

Pj where Tj > Ti

• Pi’s request has the earliest timestamp

in its queue

If your request is at the head of the queue

AND you received Replies for that request

… then you can access the critical section

27

Process Time stamp

P4 1021

P8 1022

P1 3944

P6 8201

P12 9638

Sample request queue for R

Identical at each process

CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

3. Release the resource

Release a resource:

• Process Pi removes its request from its queue

• Sends Release(Ti) to all nodes

• Each process now checks if its request is the earliest in its queue

• If so, that process now has the lock on the resource

28CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

Assessment: Lamport’s Mutual Exclusion

• Safety: Replicated queues – same process on top

• Liveness: Sorted queue & Lamport timestamps ensure earlier processes go first

• Delay/Bandwidth:

– Request = 2(N-1) messages: (N-1) Request msgs + (N-1) Reply msgs

– Release = (N-1) Release msgs

• Problems

– N points of failure

– A lot of messaging traffic

• Requests & releases are sent to the entire group

Not great … but demonstrates that a fully distributed algorithm is possible

CS 417 © 2023 Paul Krzyzanowski 29October 9, 2023

Optimizing Lamport: Ricart & Agrawala algorithm

Another contention-based distributed algorithm

using reliable multicast and logical clocks

When a process wants to enter critical section:

1. Compose a Request(R, i, Ti) message containing:

• R: Name of resource

• i: Process Identifier (machine ID, process ID)

• Ti: Timestamp (totally-ordered Lamport)

2. Reliably multicast request to all processes in group

3. Wait until everyone gives permission (sends a Reply)

4. Enter critical section / use resource

CS 417 © 2023 Paul Krzyzanowski 30October 9, 2023

Ricart & Agrawala algorithm

When process receives a request:

– If receiver not interested: send Reply to sender

– If receiver is using the resource: do not reply; add request to queue

– If receiver just sent a request as well: (potential race condition)

• Compare timestamps on received & sent messages: earliest timestamp wins

• If receiver is the loser: send Reply

• If receiver is the winner: do not reply – queue the request

– When done with resource: send Reply to all queued requests

31CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

Assessment: Ricart & Agrawala Mutual Exclusion

• Safety: Two competing processes will not send a REPLY to each other

– Timestamps in the requests are unique – one will be earlier than the other

• Liveness: Ordered by Lamport timestamp if there is contention

• Delay/Bandwidth:

– Request = 2(N-1) messages: (N-1) Request msgs + (N-1) Reply msgs

– Release = 0 … (N-1) Reply msgs to queued requests

• Problems

– N points of failure

– A lot of messaging traffic: requests & releases are sent to the entire group

CS 417 © 2023 Paul Krzyzanowski 32October 9, 2023

Lamport vs. Ricart & Agrawala

Lamport

– Everyone replies … always – no hold-back

– 3(N-1) messages

• Request → Reply → Release

– Process is granted the resource if its request is the earliest in its queue

Ricart & Agrawala

– If you are in the critical section (or won a tie)

• Don’t respond with a Reply until you are done with the critical section

– 2(N-1) messages

• Request → ACK

– Process is granted the resource if it gets ACKs from everyone

CS 417 © 2023 Paul Krzyzanowski 33October 9, 2023

Other distributed mutex algorithms

• Suzuki-Kasami

– Adds a token to Ricart & Agrawala

– Improves performance to (N-1) requests and 1 reply

• Maekawa

– Quorum-based approach – a process only needs to send requests to a subset of

the group (a quorum)

– Partitions the group – each subgroup has at least one process in common with

another subgroup

– Performance improved to 3 𝑁 … 6 𝑁 messages

• Many more…

CS 417 © 2023 Paul Krzyzanowski 34October 9, 2023

The End

35CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023

	Slide 1
	Slide 2: Process Synchronization
	Slide 3: Centralized Systems
	Slide 4: Distributed Mutual Exclusion
	Slide 5: Assumptions
	Slide 6: Categories of mutual exclusion algorithms
	Slide 7: Centralized algorithm
	Slide 8: Centralized algorithm
	Slide 9: Centralized algorithm
	Slide 10: Centralized algorithm
	Slide 11: Centralized algorithm
	Slide 12: Centralized algorithm
	Slide 13: Token Ring algorithm
	Slide 14: Token Ring algorithm
	Slide 15: Token Ring algorithm
	Slide 16: Token Ring algorithm
	Slide 17: Token Ring algorithm
	Slide 18: Token Ring algorithm
	Slide 19: Token Ring algorithm
	Slide 20: Token Ring algorithm
	Slide 21: Token Ring algorithm
	Slide 22: Token Ring algorithm
	Slide 23: Token Ring algorithm summary
	Slide 24: Token Ring algorithm summary
	Slide 25: Lamport’s Mutual Exclusion
	Slide 26: 1. Request a Resource
	Slide 27: 2. Use the Resource
	Slide 28: 3. Release the resource
	Slide 29: Assessment: Lamport’s Mutual Exclusion
	Slide 30: Optimizing Lamport: Ricart & Agrawala algorithm
	Slide 31: Ricart & Agrawala algorithm
	Slide 32: Assessment: Ricart & Agrawala Mutual Exclusion
	Slide 33: Lamport vs. Ricart & Agrawala
	Slide 34: Other distributed mutex algorithms
	Slide 35: The End

