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Process Synchronization

Techniques to coordinate execution among processes

– One process may have to wait for another

– Shared resource (critical section) may require exclusive access

Mutual exclusion

Examples • Update a fields in database tables

• Modify a shared file

• Modify file contents that are replicated on multiple servers

Easy to handle if the entire request is atomic

• Contained in a single message; server can manage mutual exclusion

Needs to be coordinated if the request comprises multiple messages

or spans multiple systems
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Centralized Systems

Achieve mutual exclusion via:

– Test & set in hardware

– Semaphores

– Messages (inter-process)

– Condition variables
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Distributed Mutual Exclusion

Goal:

Create an algorithm to allow a process to request and obtain exclusive access to 

a resource that is available on the network

Required properties:

Safety: At any instant, only one process may hold the resource

Liveness: The algorithm should make progress; processes should not wait forever for 

messages that will never arrive

Also desired:

Fairness: Each process gets a fair chance to hold the resource: bounded wait time &

 in-order processing of requests
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Assumptions

Resource identification

– Assume there is agreement on how a resource is identified

• Pass this identifier with each request

• e.g., lock("printer"),  lock("table:employees"), lock("table:employees;row:15"), lock("shared_file.txt")

– We’ll just use request(R) to request exclusive access to resource R

• Process identification

– Every process has a unique ID (e.g., address.process_id)

• Reliable communication

– Network messages are reliable (may require retransmission of lost/corrupted messages)

• Live processes

– The processes in the system do not die
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Categories of mutual exclusion algorithms

• Centralized

– A process can access a resource because a central coordinator allowed it to 

do so

• Token-based

– A process can access a resource if it is holding a token permitting it to do so

• Contention-based

– A process can access a resource via distributed agreement
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Centralized algorithm

• Mimic single processor system

• One process elected as coordinator

P

Crequest(R)

grant(R)

1.  Request resource

2.  Wait for response

3.  Receive grant

4.  access resource

5.  Release resource
release(R)
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Centralized algorithm

If another process claimed the resource:

– Coordinator does not reply until release

– Maintain queue: service requests in FIFO order

P0

C

request(R)

grant(R)

P1
request(R)

R Request Queue

P1

8CS 417 © 2023 Paul Krzyzanowski

R in use by: P0
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Centralized algorithm

If another process claimed the resource:

– Coordinator does not reply until release

– Maintain queue: service requests in FIFO order

P0

C

P1

P2

R Request Queue

P1

request(R)

P2

9CS 417 © 2023 Paul Krzyzanowski

R in use by: P0

October 9, 2023



Centralized algorithm

If another process claimed the resource:

– Coordinator does not reply until release

– Maintain queue: service requests in FIFO order

P0

C

release(R)

P1

P2

R Request Queue

P1

P2
grant(R)
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R in use by: P0R in use by: P1
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Centralized algorithm

If another process claimed the resource:

– Coordinator does not reply until release

– Maintain queue: service requests in FIFO order

P0

C

P1

P2

R Request Queue

P2
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R in use by: P1

release(R)

grant(R)R in use by: P2
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Centralized algorithm

Benefits

• Fair: All requests are processed in order

• Easy to implement, understand, and verify

• Processes do not need to know group members – just the coordinator

• Efficiency: 2 messages to enter, 1 message to exit

Problems

• Process cannot distinguish being blocked from a dead coordinator 

⇒ single point of failure

• Centralized server can be a bottleneck (unlikely!)
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Token Ring algorithm

Assume known group of processes

– Some ordering can be imposed on group (unique process IDs)

– Construct logical ring in software

– Process communicates with its neighbor

P0

P1

P2

P3

P4

P5
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Token Ring algorithm

• Initialization

– Process 0 creates a token for resource R

• Token circulates around ring from Pi to P(i+1)mod N

• When process acquires token

– Checks to see if it needs the resource (the lock)

– No: send the token to its neighbor

– Yes: access resource & hold token until done

P0

P1

P2

P3

P4

P5

token(R)
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Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R
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Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access 

resource R
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Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access 

resource R
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Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R
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Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access

resource R
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Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access

resource R
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Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R

21CS 417 © 2023 Paul KrzyzanowskiOctober 9, 2023



Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access

resource R
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Token Ring algorithm summary

• Safety: Only one process at a time has token

– Mutual exclusion guaranteed

• Liveness: Order well-defined (but not necessarily first-come, first-served)

– Starvation cannot occur

– Lack of FCFS ordering may be undesirable sometimes

• Delay:

– Request = 0…N-1 messages

– Release = 1 message
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Token Ring algorithm summary

Downsides/Problems

– Constant activity

– Token loss (e.g., process died)

• It will have to be regenerated

• Detecting loss may be a problem – is the token lost or in just use by someone?

– Process loss: what if you can't talk to your neighbor?
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Lamport’s Mutual Exclusion

Distributed algorithm using reliable multicast and logical clocks

• Messages are sent reliably and in single-source FIFO order

– Each message is time stamped with totally ordered (i.e., unique) Lamport timestamps

• Ensures that each timestamp is unique

• Every node can make the same decision by comparing timestamps

• Each process maintains a request queue

– Queue contains mutual exclusion requests

– Queues are sorted by message timestamps
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1. Request a Resource

Request a resource R:

• Process Pi sends Request(R, i, Ti ) to all nodes

It also places the same request onto its own queue

• When a process Pj receives a request:

– It returns a timestamped Reply(Tj )

– Places the request on its request queue

Every process will have an identical queue
– Same contents in the same order

Unique Lamport timestamp

26

Process Time stamp

P4 1021

P8 1022

P1 3944

P6 8201

P12 9638

Sample request queue for R

Identical at each process
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2. Use the Resource

Pi can access the resource if

• Pi has received Reply messages from every process 

Pj where Tj > Ti 

• Pi’s request has the earliest timestamp 

in its queue

If your request is at the head of the queue

AND you received Replies for that request

… then you can access the critical section
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Process Time stamp

P4 1021

P8 1022

P1 3944

P6 8201

P12 9638

Sample request queue for R

Identical at each process
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3. Release the resource

Release a resource:

• Process Pi removes its request from its queue

• Sends Release(Ti ) to all nodes

• Each process now checks if its request is the earliest in its queue

• If so, that process now has the lock on the resource
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Assessment: Lamport’s Mutual Exclusion

• Safety: Replicated queues – same process on top

• Liveness: Sorted queue & Lamport timestamps ensure earlier processes go first

• Delay/Bandwidth:

– Request = 2(N-1) messages: (N-1) Request msgs + (N-1) Reply msgs 

– Release = (N-1) Release msgs

• Problems

– N points of failure

– A lot of messaging traffic 

• Requests & releases are sent to the entire group

Not great … but demonstrates that a fully distributed algorithm is possible
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Optimizing Lamport: Ricart & Agrawala algorithm

Another contention-based distributed algorithm

using reliable multicast and logical clocks

When a process wants to enter critical section:

1. Compose a Request(R, i, Ti ) message containing:

• R: Name of resource

• i: Process Identifier (machine ID, process ID)

• Ti: Timestamp (totally-ordered Lamport)

2. Reliably multicast request to all processes in group

3. Wait until everyone gives permission (sends a Reply)

4. Enter critical section / use resource
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Ricart & Agrawala algorithm

When process receives a request:

– If receiver not interested: send Reply to sender

– If receiver is using the resource: do not reply; add request to queue

– If receiver just sent a request as well: (potential race condition)

• Compare timestamps on received & sent messages: earliest timestamp wins

• If receiver is the loser: send Reply

• If receiver is the winner: do not reply – queue the request

– When done with resource: send Reply to all queued requests
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Assessment: Ricart & Agrawala Mutual Exclusion

• Safety: Two competing processes will not send a REPLY to each other

– Timestamps in the requests are unique – one will be earlier than the other 

• Liveness: Ordered by Lamport timestamp if there is contention

• Delay/Bandwidth:

– Request = 2(N-1) messages: (N-1) Request msgs + (N-1) Reply msgs 

– Release = 0 … (N-1) Reply msgs to queued requests

• Problems  

– N points of failure

– A lot of messaging traffic: requests & releases are sent to the entire group
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Lamport vs. Ricart & Agrawala

Lamport

– Everyone replies  … always – no hold-back

– 3(N-1) messages

• Request → Reply → Release

– Process is granted the resource if its request is the earliest in its queue

Ricart & Agrawala

– If you are in the critical section (or won a tie)

• Don’t respond with a Reply until you are done with the critical section

– 2(N-1) messages

• Request → ACK

– Process is granted the resource if it gets ACKs from everyone
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Other distributed mutex algorithms

• Suzuki-Kasami

– Adds a token to Ricart & Agrawala

– Improves performance to (N-1) requests and 1 reply

• Maekawa

– Quorum-based approach – a process only needs to send requests to a subset of 

the group (a quorum)

– Partitions the group – each subgroup has at least one process in common with 

another subgroup

– Performance improved to 3 𝑁 … 6 𝑁 messages

• Many more…
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The End
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