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Properties of transactions: ACID
• Atomic – transaction completes fully or is rolled back

• Consistent – transaction cannot leave data in an inconsistent state

• Isolated (Serializable) – transactions cannot interfere with each other

• Durable – results are made permanent when a transaction commits

Challenge:
How do we ensure one transaction does not interfere with another?
– Run one transaction at a time
– Use locks to give a transaction lock exclusive access to data – mutual exclusion
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Concurrency control
• Concurrency control = managing how transactions can interact with 

objects without interfering with each other

• Pessimistic concurrency control
– Transaction locks objects it needs so other transactions can't access them

• Optimistic concurrency control
– Assume concurrent transactions will not access the same objects
– Check later – at time of commit 
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Why do we lock access to data?
• Locking (leasing) provides mutual exclusion
– Only one process at a time can access the data (or service)

• Allows us to achieve isolation
– Other processes will not see or be able to access intermediate results
– Important for consistency

Example:
Lock(table=checking_account, row=512348)

Lock(table=savings_account, row=512348)
checking_account.total = checking_account.total - 5000

savings_account.total = savings_account.total + 5000
Release(table=savings_account, row=512348)

Release(table=checking_account, row=512348)
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Serialized Execution: Schedules
Transactions must be scheduled so that results are 
equivalent to some serial order of execution
How do we achieve this?
– Use mutual exclusion to lock a transaction to ensure that only one 

transaction executes at a time
or…
– Allow multiple transactions to execute concurrently
• Lock the objects they access
• Concurrency control must ensure serializability

schedule = valid order of interleaving transactions
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Valid schedules

T0 → T1 → T2

T0 → T2 → T1

T1 → T2 → T0

T1 → T0 → T2

T2 → T0 → T1

T2 → T1 → T0



Two-Phase Locking (2PL)
• Transactions run concurrently until they compete for the same resource
– Only one will get to go … others must wait

• Grab exclusive locks on a resource
– Lock data that is used by the transaction (e.g., fields in a DB, parts of a file)
– Lock manager = mutual exclusion service

• Two-phase locking
– phase 1: growing phase: acquire locks
– phase 2: shrinking phase: release locks

• Transaction is not allowed to get new locks after it has released a lock
– This ensures serial ordering on resource access
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Without 2-phase locking
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Lock(“name”)
name=“Bob”

Release(“name”)

Lock(“age”)
age=72

Release(“age”)

Lock(“name”)
BLOCKED

name=“Linda”
Release(“name”)

Lock(“age”)
age=25

Release(“age”)

Lock(“name”, “age”)
Read name, age
name == “Linda”
age == “72”

Release(“name”, “age”)

tim
e
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Name & age are inconsistent!

Transaction 1 Transaction 2 Transaction 3



This violates 2-phase locking
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Lock(“name”)
name=“Bob”

Release(“name”)

Lock(“age”)
age=72

Release(“age”)

Lock(“name”)
BLOCKED

name=“Linda”
Release(“name”)

Lock(“age”)
age=25

Release(“age”)

Lock(“name”, “age”)
Read name, age
name == “Linda”
age == “72”

Release(“name”, “age”)

tim
e

CS 417 © 2023 Paul Krzyzanowski

tim
e

tim
e

Name & age are inconsistent!

Cannot grab a lock if you already 
released any locks.
Move this before release("name")

Cannot grab a lock if you already 
released any locks.
Move this before release("name")

Transaction 1 Transaction 2 Transaction 3



Lock(“name”)
name=“Bob”

Lock("age")
Release(“name”)

age=72
Release(“age”)

With 2-phase locking
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Transaction 1 Transaction 2 Transaction 3

Lock(“name”)
BLOCKED

name=“Linda”
Lock(“age”)
BLOCKED

Release(“name”)
age=25

Release(“age”)

Lock(“name”, “age”)
BLOCKED

Read name, age
name == “Linda”
age == “25”

Release(“name”, “age”)

tim
e
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Note that name=="Linda"
and age==72 at this point … 
but nobody can see this state 
because T1 has a lock on age.



Strong Strict Two-Phase Locking (SS2PL)
Problem with two-phase locking

• If a transaction aborts
– Any other transactions that have accessed data from released locks 

(uncommitted data) must be aborted
– Cascading aborts
• Otherwise, serial order is violated

• Avoid this situation:
– Transaction holds all locks until it commits or aborts

⇒ Strong strict two-phase locking
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Increasing concurrency: locking granularity
• There will often be many objects in a system
– A typical transaction will access only a few of them

(and may be unlikely to clash with other transactions for those objects)

• Granularity of locking affects concurrency
– Smaller amount of data locked ® higher concurrency

Example:
Lock an entire database vs. a table vs. a record in a table vs. a a field in a record
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Exclusive & Shared Locks
• Improve concurrency by supporting multiple readers
– There is no problem with multiple transactions reading data from the same object
– But only one transaction should be able to write to an object
• and no other transactions should read that data

• Two types of locks: read locks and write locks
– Set a read lock before doing a read on an object
• A read lock prevents others from writing

– Set a write lock before doing a write on an object
• A write lock prevents others from reading or writing

– Block (wait) if transaction cannot get the lock
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Read locks are often 
called shared locks

Write locks are often 
called exclusive locks



Exclusive & Shared Locks
If a transaction has

• No locks for an object:
– Other transactions may obtain a read or write lock

• A read lock for an object:
– Other transactions may obtain a read lock but must wait for a write lock

• A write lock for an object:
– Other transactions will have to wait for a read or a write lock
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Problems with locking
• Locks have an overhead: maintenance, checking

• Locks can result in deadlock

• Locks may reduce concurrency
– Transactions hold the locks until the transaction commits (strong strict two-

phase locking)

• But … If data is not locked
– A transaction may see inconsistent results
– Locking solves this problem … but incurs delays
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Optimistic concurrency control
• In many applications the chance of two transactions accessing the same object 

is low

• Allow transactions to proceed without obtaining locks

• Check for conflicts at commit time
– Check versions of objects against versions read at start
– If there is a conflict, then abort and restart some transaction

• Phases:
– Working phase: write results to a private workspace
– Validation phase: check if there’s a conflict with other transactions
– Update phase: make tentative changes permanent
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Two-Version Based Concurrency Control
• A transaction can write tentative versions of objects
– Others read from the original (previously-committed) version

• Read operations wait only when another transaction is committing the 
same object

• Allows for more concurrency than read-write locks
– Transactions with writes risk waiting or rejection at commit
– Transactions cannot commit if other uncompleted transactions have read the 

objects and committed
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Two-Version Based Concurrency Control
Three types of locks: 
1. read lock
2. write lock  
3. commit lock
Transaction cannot get a read or write lock if there is a commit lock

When the transaction coordinator receives a request to commit
– Write locks convert to commit locks
– Read locks wait until the transactions that set these locks have completed and locks are released

Compare with read/write locks:
– Read operations are delayed only while transactions are being committed
– BUT read operations of one transaction can cause a delay in the committing of other transactions
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Timestamp Ordering
• Assign unique timestamp to a transaction when it begins

• Each object has two timestamps associated with it:
– Read timestamp: updated when the object is read
– Write timestamp: updated when the object is written

• Each transaction has a timestamp = start of transaction

• Good ordering:
– Object’s read and write timestamps will be older than the current transaction if it wants to 

write an object
– Object’s write timestamps will be older than the current transaction if it wants to read an 

object

Abort and restart transaction for improper ordering
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Multiversion Concurrency Control (MVCC)
We can combine timestamp ordering AND multiple versions of an object 
to achieve even greater concurrency
• When a transaction wants to modify data, it creates a new version

• Store multiple versions of each object
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Multiversion Concurrency Control (MVCC)
• Snapshot isolation
– Each transaction sees the versions of data in the state when the transaction started
– Data is consistent for that point in time

• Timestamps – similar to timestamp ordering:
• A transaction has a Transaction timestamp = sequence # of transaction
• Each instance of an object has associated timestamps:
– Read timestamp = transaction timestamp that last read the object
– Write timestamp = transaction timestamp that last modified the object

– Reads never block but instead read a version < timestamp(transaction)
– Writes cannot complete if there are active transactions with earlier read timestamps for the object
• This means a later transaction is dependent on an earlier value of the object
• The transaction will be aborted and restarted

• Old versions of objects will have to be cleaned up periodically
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Leasing versus Locking
• Common approach:
– Get a lock for exclusive access to a resource

• But locks are not fault-tolerant
– What if the process that has the lock dies?
– It’s safer to use a lock that expires instead
– Lease = lock with a time limit

• Lease time: trade-offs
– Long leases with possibility of long wait after failure
– Or short leases that need to be renewed frequently

Risk of using leases: possible loss of transactional integrity if the lease expires
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The End
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