
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 8: Distributed Transactions
Part 3: Concurrency Control

© 2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Properties of transactions: ACID
• Atomic – transaction completes fully or is rolled back

• Consistent – transaction cannot leave data in an inconsistent state

• Isolated (Serializable) – transactions cannot interfere with each other

• Durable – results are made permanent when a transaction commits

Challenge:
How do we ensure one transaction does not interfere with another?
– Run one transaction at a time
– Use locks to give a transaction lock exclusive access to data – mutual exclusion

CS 417 © 2023 Paul Krzyzanowski 2

Concurrency control
• Concurrency control = managing how transactions can interact with

objects without interfering with each other

• Pessimistic concurrency control
– Transaction locks objects it needs so other transactions can't access them

• Optimistic concurrency control
– Assume concurrent transactions will not access the same objects
– Check later – at time of commit

CS 417 © 2023 Paul Krzyzanowski 3

Why do we lock access to data?
• Locking (leasing) provides mutual exclusion
– Only one process at a time can access the data (or service)

• Allows us to achieve isolation
– Other processes will not see or be able to access intermediate results
– Important for consistency

Example:
Lock(table=checking_account, row=512348)

Lock(table=savings_account, row=512348)
checking_account.total = checking_account.total - 5000

savings_account.total = savings_account.total + 5000
Release(table=savings_account, row=512348)

Release(table=checking_account, row=512348)

4CS 417 © 2023 Paul Krzyzanowski

Serialized Execution: Schedules
Transactions must be scheduled so that results are
equivalent to some serial order of execution
How do we achieve this?
– Use mutual exclusion to lock a transaction to ensure that only one

transaction executes at a time
or…
– Allow multiple transactions to execute concurrently
• Lock the objects they access
• Concurrency control must ensure serializability

schedule = valid order of interleaving transactions

5CS 417 © 2023 Paul Krzyzanowski

Valid schedules

T0 → T1 → T2

T0 → T2 → T1

T1 → T2 → T0

T1 → T0 → T2

T2 → T0 → T1

T2 → T1 → T0

Two-Phase Locking (2PL)
• Transactions run concurrently until they compete for the same resource
– Only one will get to go … others must wait

• Grab exclusive locks on a resource
– Lock data that is used by the transaction (e.g., fields in a DB, parts of a file)
– Lock manager = mutual exclusion service

• Two-phase locking
– phase 1: growing phase: acquire locks
– phase 2: shrinking phase: release locks

• Transaction is not allowed to get new locks after it has released a lock
– This ensures serial ordering on resource access

CS 417 © 2023 Paul Krzyzanowski 6

Without 2-phase locking

7

Lock(“name”)
name=“Bob”

Release(“name”)

Lock(“age”)
age=72

Release(“age”)

Lock(“name”)
BLOCKED

name=“Linda”
Release(“name”)

Lock(“age”)
age=25

Release(“age”)

Lock(“name”, “age”)
Read name, age
name == “Linda”
age == “72”

Release(“name”, “age”)

tim
e

CS 417 © 2023 Paul Krzyzanowski

tim
e

tim
e

Name & age are inconsistent!

Transaction 1 Transaction 2 Transaction 3

This violates 2-phase locking

8

Lock(“name”)
name=“Bob”

Release(“name”)

Lock(“age”)
age=72

Release(“age”)

Lock(“name”)
BLOCKED

name=“Linda”
Release(“name”)

Lock(“age”)
age=25

Release(“age”)

Lock(“name”, “age”)
Read name, age
name == “Linda”
age == “72”

Release(“name”, “age”)

tim
e

CS 417 © 2023 Paul Krzyzanowski

tim
e

tim
e

Name & age are inconsistent!

Cannot grab a lock if you already
released any locks.
Move this before release("name")

Cannot grab a lock if you already
released any locks.
Move this before release("name")

Transaction 1 Transaction 2 Transaction 3

Lock(“name”)
name=“Bob”

Lock("age")
Release(“name”)

age=72
Release(“age”)

With 2-phase locking

9

Transaction 1 Transaction 2 Transaction 3

Lock(“name”)
BLOCKED

name=“Linda”
Lock(“age”)
BLOCKED

Release(“name”)
age=25

Release(“age”)

Lock(“name”, “age”)
BLOCKED

Read name, age
name == “Linda”
age == “25”

Release(“name”, “age”)

tim
e

CS 417 © 2023 Paul Krzyzanowski

tim
e

tim
e

Note that name=="Linda"
and age==72 at this point …
but nobody can see this state
because T1 has a lock on age.

Strong Strict Two-Phase Locking (SS2PL)
Problem with two-phase locking

• If a transaction aborts
– Any other transactions that have accessed data from released locks

(uncommitted data) must be aborted
– Cascading aborts
• Otherwise, serial order is violated

• Avoid this situation:
– Transaction holds all locks until it commits or aborts

⇒ Strong strict two-phase locking

10CS 417 © 2023 Paul Krzyzanowski

Increasing concurrency: locking granularity
• There will often be many objects in a system
– A typical transaction will access only a few of them

(and may be unlikely to clash with other transactions for those objects)

• Granularity of locking affects concurrency
– Smaller amount of data locked ® higher concurrency

Example:
Lock an entire database vs. a table vs. a record in a table vs. a a field in a record

11CS 417 © 2023 Paul Krzyzanowski

Exclusive & Shared Locks
• Improve concurrency by supporting multiple readers
– There is no problem with multiple transactions reading data from the same object
– But only one transaction should be able to write to an object
• and no other transactions should read that data

• Two types of locks: read locks and write locks
– Set a read lock before doing a read on an object
• A read lock prevents others from writing

– Set a write lock before doing a write on an object
• A write lock prevents others from reading or writing

– Block (wait) if transaction cannot get the lock

12CS 417 © 2023 Paul Krzyzanowski

Read locks are often
called shared locks

Write locks are often
called exclusive locks

Exclusive & Shared Locks
If a transaction has

• No locks for an object:
– Other transactions may obtain a read or write lock

• A read lock for an object:
– Other transactions may obtain a read lock but must wait for a write lock

• A write lock for an object:
– Other transactions will have to wait for a read or a write lock

13CS 417 © 2023 Paul Krzyzanowski

Problems with locking
• Locks have an overhead: maintenance, checking

• Locks can result in deadlock

• Locks may reduce concurrency
– Transactions hold the locks until the transaction commits (strong strict two-

phase locking)

• But … If data is not locked
– A transaction may see inconsistent results
– Locking solves this problem … but incurs delays

14CS 417 © 2023 Paul Krzyzanowski

Optimistic concurrency control
• In many applications the chance of two transactions accessing the same object

is low

• Allow transactions to proceed without obtaining locks

• Check for conflicts at commit time
– Check versions of objects against versions read at start
– If there is a conflict, then abort and restart some transaction

• Phases:
– Working phase: write results to a private workspace
– Validation phase: check if there’s a conflict with other transactions
– Update phase: make tentative changes permanent

CS 417 © 2023 Paul Krzyzanowski 15

Two-Version Based Concurrency Control
• A transaction can write tentative versions of objects
– Others read from the original (previously-committed) version

• Read operations wait only when another transaction is committing the
same object

• Allows for more concurrency than read-write locks
– Transactions with writes risk waiting or rejection at commit
– Transactions cannot commit if other uncompleted transactions have read the

objects and committed

16CS 417 © 2023 Paul Krzyzanowski

Two-Version Based Concurrency Control
Three types of locks:
1. read lock
2. write lock
3. commit lock
Transaction cannot get a read or write lock if there is a commit lock

When the transaction coordinator receives a request to commit
– Write locks convert to commit locks
– Read locks wait until the transactions that set these locks have completed and locks are released

Compare with read/write locks:
– Read operations are delayed only while transactions are being committed
– BUT read operations of one transaction can cause a delay in the committing of other transactions

17CS 417 © 2023 Paul Krzyzanowski

Timestamp Ordering
• Assign unique timestamp to a transaction when it begins

• Each object has two timestamps associated with it:
– Read timestamp: updated when the object is read
– Write timestamp: updated when the object is written

• Each transaction has a timestamp = start of transaction

• Good ordering:
– Object’s read and write timestamps will be older than the current transaction if it wants to

write an object
– Object’s write timestamps will be older than the current transaction if it wants to read an

object

Abort and restart transaction for improper ordering

CS 417 © 2023 Paul Krzyzanowski 18

Multiversion Concurrency Control (MVCC)
We can combine timestamp ordering AND multiple versions of an object
to achieve even greater concurrency
• When a transaction wants to modify data, it creates a new version

• Store multiple versions of each object

CS 417 © 2023 Paul Krzyzanowski 19

Multiversion Concurrency Control (MVCC)
• Snapshot isolation
– Each transaction sees the versions of data in the state when the transaction started
– Data is consistent for that point in time

• Timestamps – similar to timestamp ordering:
• A transaction has a Transaction timestamp = sequence # of transaction
• Each instance of an object has associated timestamps:
– Read timestamp = transaction timestamp that last read the object
– Write timestamp = transaction timestamp that last modified the object

– Reads never block but instead read a version < timestamp(transaction)
– Writes cannot complete if there are active transactions with earlier read timestamps for the object
• This means a later transaction is dependent on an earlier value of the object
• The transaction will be aborted and restarted

• Old versions of objects will have to be cleaned up periodically

CS 417 © 2023 Paul Krzyzanowski 20

Leasing versus Locking
• Common approach:
– Get a lock for exclusive access to a resource

• But locks are not fault-tolerant
– What if the process that has the lock dies?
– It’s safer to use a lock that expires instead
– Lease = lock with a time limit

• Lease time: trade-offs
– Long leases with possibility of long wait after failure
– Or short leases that need to be renewed frequently

Risk of using leases: possible loss of transactional integrity if the lease expires

CS 417 © 2023 Paul Krzyzanowski 21

The End

22CS 417 © 2023 Paul Krzyzanowski

