
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 9: Distributed Databases
 Part 3: Google Spanner

© 2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Spanner
Google’s successor to Bigtable … (sort of)

2CS 417 © 2023 Paul Krzyzanowski

Spanner

3

Take Bigtable and add:
• Familiar SQL-like multi-table, row-column data model
–One primary key per table
• Synchronous replication (Bigtable was eventually consistent)
• Transactions across arbitrary rows

Goal: make it easy for programmers to use
Working with eventual consistency & merging data is hard ⇒ don't make developers deal with it

CS 417 © 2023 Paul Krzyzanowski

Spanner
• Globally distributed multi-version database
• ACID (general purpose transactions)
• Schematized tables (Semi-relational)
– Built on top of a key-value based implementation
– SQL-like queries
• Lock-free distributed read transactions

Data Storage
• Tables sharded across rows into tablets

(like bigtable)

• Tablets are stored in spanservers

• 1000s of spanservers per zone
– Collection of servers

• Zonemaster
Allocates data to spanservers

• Location proxies
Locate spanservers that have the needed data

• Universemaster
Tracks status of all zones

• Placement driver
Transfers data between zones

4

SpanserverSpanserverSpanserver

Zonemaster

Location
Proxy

Zo
ne

 1
Universemaster Placement Driver

CS 417 © 2023 Paul Krzyzanowski

SpanserverSpanserverSpanserver

Zonemaster

Location
Proxy

Zo
ne

 2 SpanserverSpanserverSpanserver

Zonemaster

Location
Proxy

Zo
ne

 N

Data Storage

CS 417 © 2023 Paul Krzyzanowski 5

Universe: holds one or more databases

Database: holds one or more tables

Table: rows & columns

Shards (tablets): pieces of tables
Replicated synchronously via Paxos

Data in table is versioned & has
a timestamp

Directory: “bucket” – set of contigious keys with a common prefix
Unit of data movement

Transactions across shards use two-phase commit

Transactions
• ACID properties
– Elected transaction manager for distributed transactions
– Two-phase commit protocol used outside of a group of replicas

• Transactions are serialized: strict 2-phase locking used

6

1. Acquire all locks
 – do work –

2. Get a commit timestamp
3. Log the commit timestamp via Paxos consensus to majority of replicas
4. Do the commit

–Apply changes locally & to replicas
5. Release locks

CS 417 © 2023 Paul Krzyzanowski

Read-write transactions
Spanner uses strict two-phase locking
with read locks and write locks

• Writes in read/write transactions
⇒ two-phase locking

• Reads in read/write transactions
⇒ wound-wait algorithm
prevents deadlocks

Read-only transactions &
Snapshot reads
Multiversion concurrency
– Snapshot isolation:

provide a view of the database up to a point in
time

– No locking needed – great for long-running
reads (e.g., searches)
• Snapshot reads = read versions < user-chosen time
• Read-only transactions: read versions of data <

transaction start time

– Because you are reading the version of data
before a specific point in time, results are
consistent

We need commit timestamps that will
enable meaningful snapshots

CS 417 © 2023 Paul Krzyzanowski 7

Even 2-Phase locking can be slow

Getting good commit timestamps
• Vector clocks work
– Pass along the current server’s notion of time with each message
– Receiver updates its concept of time (if necessary)

• But are not feasible in large systems
– Pain in HTML (have to embed a large vector timestamp in the HTTP transaction)
– Doesn’t work if you introduce things like phone call logs

• Spanner: use physical timestamps
– If T1 commits before T2 then T1 must get a smaller timestamp
– Commit order matches global wall-time order
External consistency

If a transaction T1 commits before another transaction T2 starts, then T1’s commit timestamp must
be smaller than that of T2. If the results of T2 are visible to the user, then the results of T1 must also
be visible, even if the transactions did not conflict.

CS 417 © 2023 Paul Krzyzanowski 8

TrueTime API
Remember: we can’t know global time across servers!

Global wall-clock time = time + interval of uncertainty
TT.now().earliest = time guaranteed to be ≤ current time
TT.now().latest = time guaranteed to be ≥ current time

Each data center has a GPS receiver & atomic clock

• Atomic clock synchronized with GPS receivers
– Validates data from GPS receivers

• Spanservers periodically synchronize with time servers
– Know uncertainty based on interval
– Synchronize ~ every 30 seconds: clock uncertainty < 10 ms

CS 417 © 2023 Paul Krzyzanowski 9

Commit Wait
We don’t know the exact time
… but we can wait out the uncertainty and finish the commit when the commit timestamp
is definitely in the past

10

1. Acquire all locks
 – do work –

2. Get a commit timestamp: t = TT.now().latest
3. Commit wait: wait until TT.now().earliest > t
4. Commit
5. Release locks

average worst-case wait is ~10 ms

CS 417 © 2023 Paul Krzyzanowski

CS 417 © 2023 Paul Krzyzanowski 11

Integrate replication with concurrency control

Make the replicas &
wait for all to finish

1. Acquire all locks
 – do work –

2. Get a commit timestamp: t = TT.now().latest
3. (a) Start consensus for replication

(b) Commit wait (in parallel)
4. Commit
5. Release locks

Features
• Semi-relational database of tables
– Supports externally consistent

distributed transactions
– No need for users to deal with

eventual consistency

• Multi-version database

• Synchronous replication

• Scales to millions of machines in
hundreds of data centers

• SQL-based query language

Deployments
• Used in F1, the system behind

Google’s Adwords platform

• Likely used in YouTube, Drive, and
Gmail

• Available as a public service via
Cloud Spanner

CS 417 © 2023 Paul Krzyzanowski 12

Spanner Summary

Are we breaking the rules?
• Global ordering of transactions
– Systems cannot have globally synchronized clocks
– But we can synchronize closely enough that we can have a transaction wait until a

specific time has passed

• CAP theorem
– We cannot offer Consistency + Availability + Partition tolerance (CAP Theorem)
– Spanner is a CP system – if there is a partition, Spanner chooses C over A
– In practice, partitions are rare: ~8% of all failures of Spanner
• Spanner uses Google’s private global network, not the Internet
• Each data center has at least three independent fiber connections

– In practice, users can feel they have a CA system – high availability AND consistency!

CS 417 © 2023 Paul Krzyzanowski 13

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45855.pdf

Spanner Conclusion
• ACID semantics not sacrificed
– Life gets easy for programmers
– Programmers don’t need to deal with eventual consistency

• Wide-area distributed transactions built-in
– Bigtable did not support atomic multi-table or multi-row transactions
– Programmers had to write their own, which could be buggy
– Easier if programmers don’t have to get 2PC right

• Clock uncertainty is known
– The system can wait it out
– Users get external consistency – transaction order = real time order

14CS 417 © 2023 Paul Krzyzanowski

The End

15CS 417 © 2023 Paul Krzyzanowski

