Lecture Notes

CS 417 - DISTRIBUTED SYSTEMS

Week 10: Large-Scale Data Processing

Part 1: MapReduce

Paul Krzyzanowski

© 2023 Paul Krzyzanowski. No part of this content may be reproduced or reposted in whole or in part in any manner without the permission of the copyright owner.

Processing large amounts of data

Suppose you need to perform some computation on a huge amount of data – searching, indexing, generating statistics ...

- Even small amounts of processing can add up
 - 100ms per data item x 1 billion items = 1157 days of computation!
- What do we do?
 - Break the work up so lots of computers can work on just parts of the data
 - Split the workload among 10,000 computers ⇒ 2.7 hours of computation
- Put the data on a file server?
 - You might have more data than you can fit on one system
 - Disk bandwidth will be an issue: if you read an SSD at 500 MB/s, it becomes a bottleneck before the network
 - And bandwidth is shared, so those 10,000 systems will get data at < 5KB/s

We need to distribute the workload and the data

Goals

Traditional programming is serial

Parallel programming in a distributed environment

Split processing into parts that can be executed concurrently on multiple processors

Challenge

- Identify tasks that can run concurrently and/or groups of data that can be processed concurrently
- Not all problems can be parallelized

Dealing with distributed software is a pain!

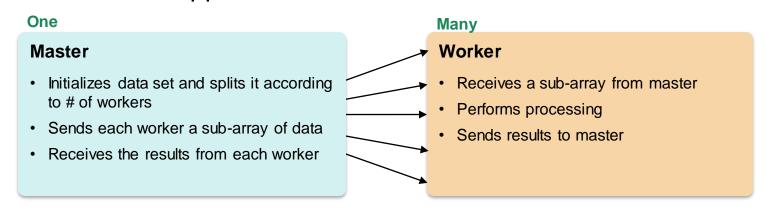
Interact with the distributed environment

- Split up data
- Allocate servers
- Get programs onto those servers and start them
- Partition the work among the processes
- Monitor for failure
- Restart failed processes
- Collect the results

None of this relates to solving the user's problem – it's software infrastructure

Simplest environment for parallel processing

- No dependency among data
- Data can be split into lots of smaller chunks shards (splits)
- Each process can work on a chunk
- Master/worker approach



MapReduce

Created by Google in 2004

Jeffrey Dean and Sanjay Ghemawat

Inspired by LISP

Map(function, set of values)

Applies function to each value in the set

```
(map 'length '(() (a) (a b) (a b c))) \Rightarrow (0 1 2 3)
```

Reduce(function, set of values)

Combines all the values using a binary function (e.g., +)

```
(reduce #'+ '(1 2 3 4 5)) \Rightarrow 15
```

MapReduce

- Framework for parallel computing
- Programmers get simple API
- Don't have to worry about handling
 - Parallelization
 - Program distribution
 - Data distribution
 - Load balancing
 - Fault tolerance
 - Monitoring

Allows a user to process huge amounts of data (terabytes and petabytes) on thousands of processors

Who has it?

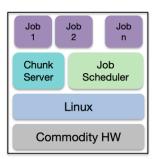
Google

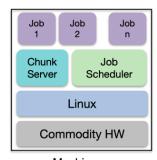
- Original proprietary implementation
- Runs on the same computers as the data storage (GFS, Bigtable)

- Most common (open-source) implementation
- Built based on the Google paper

Others

- Amazon Elastic MapReduce uses Hadoop MapReduce running on Amazon EC2
- Microsoft Azure HDInsight
- Google Cloud MapReduce for App Engine





Machine 1

Machine n

MapReduce – a high-level view

Map:

Grab the relevant data from the source

User function gets called for each chunk of input

Spits out (key, value) pairs

Reduce:

Aggregate the results

User function gets called for each unique key with all values corresponding to that key

MapReduce

Map: (input shard) → intermediate(key/value pairs)

- Automatically partition input data into M shards
- Discard unnecessary data and generate (key, value) sets
- Framework groups together all intermediate values with the same intermediate key & passes them to the Reducefunction

Reduce: intermediate(key/value pairs) → result files

- Input: key & set of values
- Merge these values together to form a smaller set of values

Keys are distributed to Reduce workers are by partitioning the intermediate key space into R pieces using a partitioning function (default = $hash(key) \mod R$)

The user specifies the # of partitions (R) and, optionally, the partitioning function

MapReduce: what happens in between?

Map

- Grab the relevant data from the source (parse into key, value)
- Write it to an intermediate file

Partition

- Partitioning: identify which of R reducers will handle which keys
- Map partitions data to target it to one of R Reduce workers based on a partitioning function (both R and partitioning function user defined)

Shuffle & Sort

- Shuffle: Fetch the relevant partition of the output from all mappers
- Sort by keys (different mappers may have sent data with the same key)

Reduce

- Input is the sorted output of mappers
- Call the user Reduce function per key with the list of values for that key to aggregate the results

Step 1: Split input files into chunks (shards/splits)

Break up the input data into *M* pieces (typically 64 MB to match GFS chunk size)

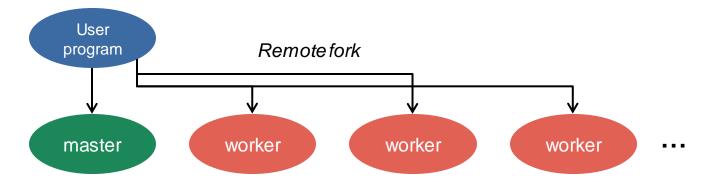
Shard 0 Sha	ard 1 Shard 2	Shard 3		Shard M-1
-------------	---------------	---------	--	--------------

Input data

Divided into *M* shards (splits)

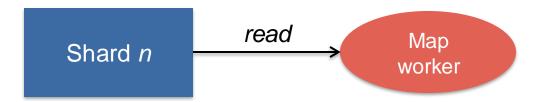
Step 2: Fork processes

- Start up many copies of the program on a cluster of machines
 - One master: scheduler & coordinator
 - Lots of workers
- Idle workers are assigned either:
 - map tasks (each works on a shard) there are M map tasks
 - reduce tasks (each works on intermediate files) there are R tasks
 - *R* = # partitions, defined by the user



Step 3: Run Map Tasks

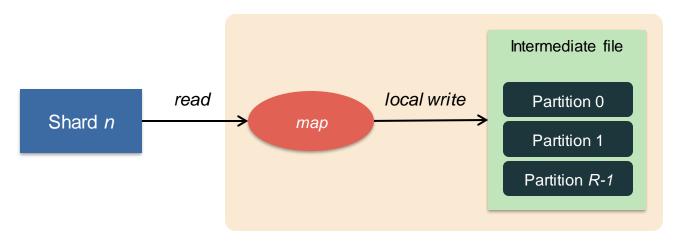
- Reads contents of the input shard assigned to it
- Parses key/value pairs out of the input data
- Passes each pair to a user-defined map function
 - Produces intermediate key/value pairs
 - These are buffered in memory



MapReduce frameworks support multiple input formats: Input data may be a single file, directories of files, database query results, and various data formats, such as binary, text, line-oriented text, and key-value pairs

Step 4: Create intermediate files

- Intermediate key/value pairs produced by the user's map function buffered in memory and are periodically written to the local disk
 - Partitioned into R regions by a partitioning function
- Notifies master when complete
 - Passes locations of intermediate data to the master.
 - Master forwards these locations to the reduce worker



Step 4a. Partitioning

- Map key-value data will be processed by Reduce workers
 - The user's Reduce function will be called once per unique key generated by Map.
- We first need to group all the (key, value) data by keys and decide which Reduce worker processes which set of keys
 - The Reduce worker will later sort the values within each keys

Partition function

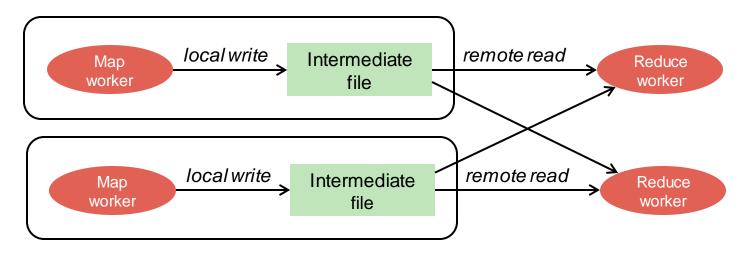
Decides which of R reduce workers will work on which keys

- Default function to identify a reduce worker: hash(key) mod R
- Map worker partitions the data by groups of keys for each Reduce worker
- Each Reduce worker will later read their partition from every Map worker

Step 5: Reduce Task: Shuffle & Sort

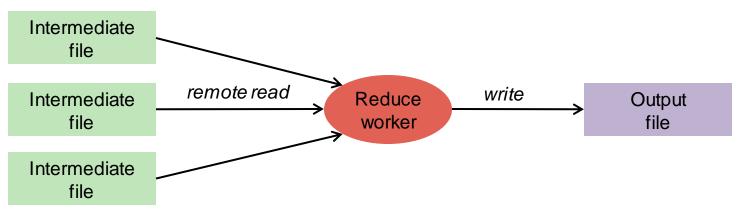
Reduce worker is notified by the master about the location of intermediate files for its partition

- Shuffle: Uses RPCs to read the data from the local disks of the map workers
- Sort: When the reduce worker gets all the (key, value) data for its partition from all workers
 - It sorts the data by the keys
 - All occurrences of the same key are grouped together



Step 6: Reduce Task: Reduce

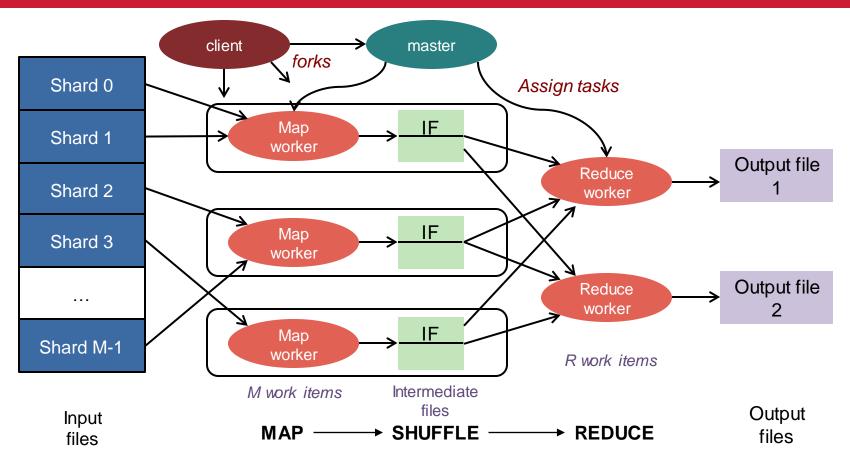
- The sort phase grouped data by keys
 - This makes it easy to identify all the values from all the map workers that are associated with each key
- The user's **Reduce** function is given the key and the set of intermediate values for that key < key, (value1, value2, value3, value4, ...) >
- The output of the Reduce function is appended to an output file



Step 7: Return to user

- When all map and reduce tasks have completed, the master wakes up the user program
- The MapReduce call in the user program returns and the program can resume execution
- Output of MapReduce is available in R output files

MapReduce: the complete picture



Example: Word Count

- Count # occurrences of each word in a collection of documents
- Map:
 - Parse data; output each word and a count (1)
- Reduce:
 - Sort: sort by keys (words)
 - Reduce: Sum together counts each key (word)

```
map(String key, String value):
    // key: document name, value: document contents
for each word w in value:
    EmitIntermediate(w, "1");

reduce(String key, Iterator values):
    // key: a word; values: a list of counts
int result = 0;
for each v in values:
    result += ParseInt(v);
Emit(AsString(result));
```

Example: Word Count

Output from Input to After Map After Sort Input reduce() [Intermediate file] reduce() It will be seen that this a, (1, 1, 1, ...) a 4736 it 1 a 1 will 1 aback, (1, 1) mere painstaking a 1 aback 2 burrower and grub-worm be 1 abaft, (1, 1) abaft 2 aback 1 abandon, (1, 1, 1) seen 1 of a poor devil of a Subaback 1 abandon 3 that 1 abandoned, (1 Sub appears to have abaft 1 abandoned 7 this 1 gone through the long abaft 1 abandonedly 1 abandonedly, (1) mere 1 Vaticans and street-stalls abandonment 2 abandon 1 abandonment, (1, painstaking of the earth, picking up MAP abandon 1 REDUCE abased 2 whatever random abased, (1, 1) abandon 1 abasement 1 burrower 1 allusions to whales he abasement, (1) abashed 2 and 1 abandoned 1 could anyways find in any abashed, (1,1)grub-worm 1 abandoned 1 abate 1 book whatsoever, sacred abate, (1) of 1 abated 3 abandoned 1 or profane. Therefore you abated, (1, 1, 1) a 1 abandoned 1 abatement 1 must not, in every case at abatement 1 poor 1 abandoned 1 abating 2 least, take the higgledyabating, (1, 1) devil 1 abandoned 1 abbreviate 1 piggledy whale abbreviate, (1) of 1 abandoned 1 abbreviation 1 statements, however abbreviation. (1) a 1 authentic, in these abandonedly 1 abeam 1 abeam.(1) sub-sub 1 abed 2 extracts, for veritable abandonment 1 abed, (1, 1) appears 1 abednego, (1) gospel cetology. Far from abandonment 1 abednego 1 to 1 it. As touching the abel, (1) have 1 abel 1 abased 1 abhorred, (1, 1, ancient authors ... gone 1 abased 1 abhorred 3 CS 417 © 2023 Paul Krzyzanowski abhorrence 1 abhorrence, (1)

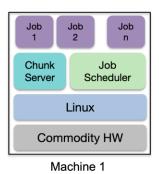
Fault tolerance

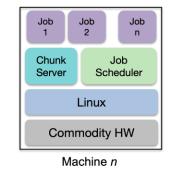
Master pings each worker periodically

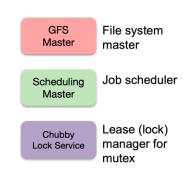
- If no response is received within a certain time, the worker is marked as failed
- Map or reduce tasks given to this worker are reset back to the initial state and rescheduled for other workers

Locality

- Input and Output data comes from:
 - GFS (Google File System)
 file or files
 - Bigtable, Spanner





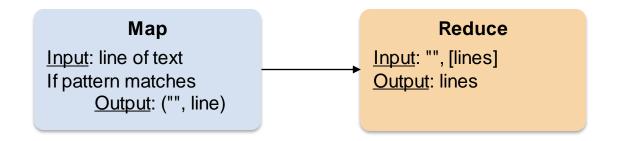


- MapReduce (often) runs on GFS chunkservers
 - Keep computation close to the files if possible
- Master tries to schedule map worker on one of the machines that has a copy of the input chunk it needs

Other Examples: Search

Distributed grep (search for words)

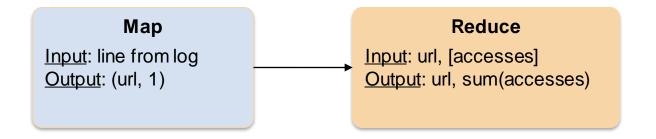
- Search for words in lots of documents
- Map: emit a line if it matches a given pattern
- Reduce: just copy the intermediate data to the output



Other Examples: URL access counts

List URL access counts

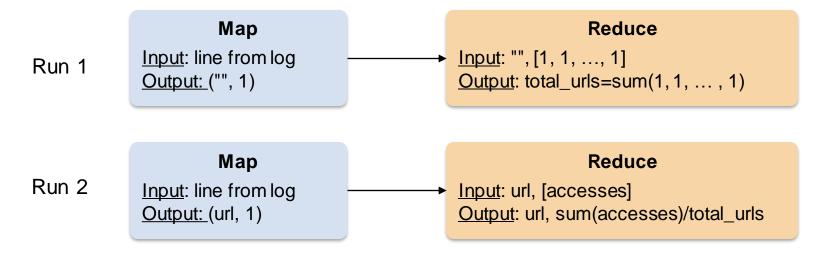
- Find the count of each URL in web logs
- Map: process logs of web page access; output <URL, 1>
- Reduce: add all values for the same URL



Other Examples: URL access frequency

Count URL access frequency

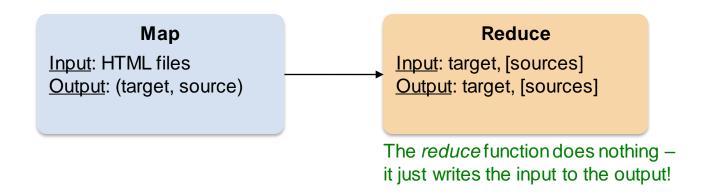
- Find the frequency of each URL in web logs
- Run 1: just count total URLs
- Run 2: just like URL count but now we stored total_urls



Other Examples

Reverse web-link graph

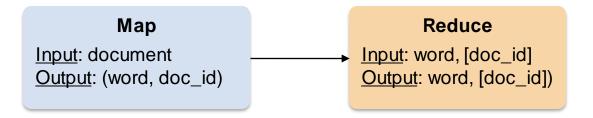
- Find where page links come from
- Map: output <target, source> for each link to target in a page source
- Reduce: concatenate the list of all source URLs associated with a target Output <target, list(source)>



Other Examples

Inverted index

- Find what documents contain a specific word
- Map: parse document, emit <word, document-ID> pairs
- Reduce: for each word, sort the corresponding document IDs Emit a <word, list(document-ID)> pair
 The set of all output pairs is an inverted index



Other Examples

Stock performance summary

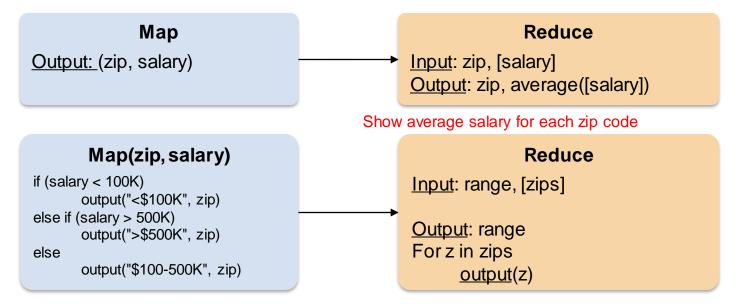
- Find average daily gain of each company from 1/1/2010 12/31/2020
- Data is a set of lines: { date, company, start_price, end_price }



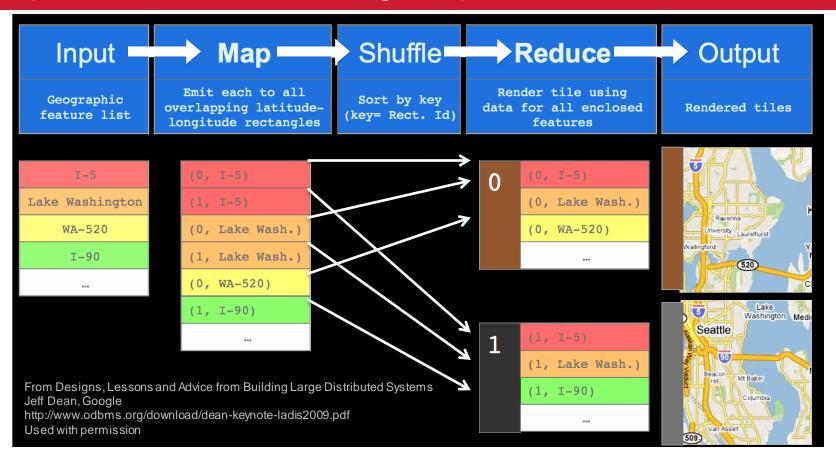
Other Examples: Two rounds of MapReduce

Average salaries in regions

- Show zip codes where average salaries are in the ranges:
 (1) < \$100K
 (2) \$100K
 (3) > \$500K
- Data is a set of lines: { name, age, address, zip, salary }



MapReduce for Rendering Map Tiles

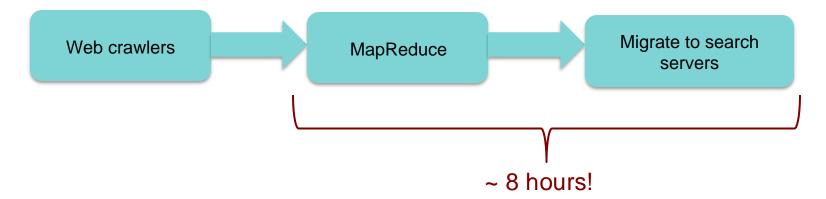


MapReduce Summary

- Get a lot of data
- Map
 - Parse & extract items of interest
- Sort (shuffle) & partition
- Reduce
 - Aggregate results
- Write to output files

All is not perfect

- MapReduce was used to process webpage data collected by Google's crawlers.
 - It would extract the links and metadata needed to search the pages
 - Determine the site's PageRank
- The process took around eight hours!
 - Results were moved to search servers
 - This was done continuously



All is not perfect

- Web has become more dynamic
 - An 8+ hour delay is a lot for some sites
 - Goal: refresh certain pages within seconds

MapReduce

- Batch-oriented
- Not suited for near-real-time processes
- Cannot start a new phase until the previous has completed
 - Reduce cannot start until all Map workers have completed
- Suffers from "stragglers" workers that take too long (or fail)
- This was done continuously
- MapReduce is still useful but there are also other options
- Search framework updated in 2009-2010: Caffeine
 - Analyze web in small portions
 - Update index by making direct changes to data stored in Bigtable
 - Process hundreds of thousands of pages per second in parallel data resides in Colossus (GFS2) instead of GFS

In Practice

- Most data is not stored as simple files
 - B-trees, tables, SQL databases, memory-mapped key-values
- We don't usually use textual data: it's slow & hard to parse
 - Most I/O gets encoded with Protocol Buffers

More info

 Good tutorial presentation & examples at: http://research.google.com/pubs/pub36249.html

 The definitive paper: http://labs.google.com/papers/mapreduce.html

The End