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MapReduce isn’t always the answer

MapReduce works well for certain problems
– The framework provides

• Automatic parallelization
• Automatic job distribution

For others:
– May require many iterations of MapReduce
– Data locality usually not preserved between Map and Reduce

• Lots of communication between map and reduce workers
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Bulk Synchronous Parallel (BSP)

Created as a computing model for parallel computation

Execution is a series of supersteps
1. Concurrent computation
2. Communication 
3. Barrier synchronization
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Bulk Synchronous Parallel (BSP)

4

Superstep 0 Superstep 1 Superstep 2 Superstep 3 Superstep 4 Superstep 5

CS 417 © 2023 Paul Krzyzanow ski



Bulk Synchronous Parallel (BSP)

Series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization
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• Processes (workers) are randomly assigned to 
processors

• Each process uses only local data

• Each computation is asynchronous of other concurrent 
computation

• Computation time may vary
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Bulk Synchronous Parallel (BSP)

Series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization
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• Incoming messages are received at the start of a superstep
• Messaging are sent by a process during a superstep
• Each process may send a message to 0 or more processes

• These messages become inputs for the next superstep

End of superstep: Messages 
received by all workers

Start of next superstep:
Messages delivered to all workers
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Bulk Synchronous Parallel (BSP)

Series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization
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• The next superstep does not begin until all messages 
have been received

• Barriers ensure no deadlock: no circular dependency can 
be created

• Provide an opportunity to checkpoint results for fault 
tolerance
– If there's a failure, restart computation from the last superstep

CS 417 © 2023 Paul Krzyzanow ski

Initial data

Initial data

Initial data

Initial data

Compute

Compute

Compute

Compute

B
ar

rie
r

Input msgs

Input msgs

Input msgs

Input msgs

Compute

Compute

Compute

Compute

B
ar

rie
r

Input msgs

Input msgs

Input msgs

Input msgs

Superstep 0 Superstep 1



BSP Implementation: Apache Hama

• Hama: BSP framework on top of HDFS
– Provides automatic parallelization & distribution
– Uses Hadoop RPC

• Data is serialized with Google Protocol Buffers
– Zookeeper for coordination (Apache version of Google’s Chubby)

• Handles notifications for Barrier Sync

• Good for applications with data locality
– Matrices and graphs
– Algorithms that require a lot of iterations
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hama.apache.org
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Hama programming (high-level)

• Pre-processing
– Define the number of peers for the job
– Split initial inputs for each of the peers to run their supersteps
– Framework assigns a unique ID to each worker (peer)

• Superstep: the worker function is a superstep
– getCurrentMessage() – input messages from previous superstep 
– Compute – your code
– send(peer, msg) – send messages to a peer
– sync() – synchronize with other peers (barrier)

• File I/O
– Key/value model used by Hadoop MapReduce & HBase
– readNext(key, value)
– write(key, value)
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Google Bigtable
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For more information

• Architecture, examples, API

• Take a look at:
– Apache Hama project page

• http://hama.apache.org
– Hama BSP tutorial

• https://hama.apache.org/hama_bsp_tutorial.html
– Apache Hama Programming document

• http://bit.ly/1aiFbXS
http://people.apache.org/~tjungblut/downloads/hamadocs/ApacheHamaBSPProgrammingmodel_06.pdf
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Graph computing
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Graphs are common in computing

• Social links
– Friends
– Academic citations
– Music
– Movies

• Web pages

• Network connectivity

• Roads

• Disease outbreaks
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Processing graphs on a large scale is hard

• Computation with graphs
– Poor locality of memory access
– Little work per vertex

• Distribution across machines
– Communication complexity
– Failure concerns

• Solutions
– Application-specific, custom solutions
– MapReduce or databases

• The <key,value> view of the world isn't the most natural for graphs
• But require many iterations (and a lot of data movement)

– Single-computer libraries: limits scale
– Parallel libraries: do not address fault tolerance
– BSP: close but too general
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Pregel: a vertex-centric BSP

Input: directed graph
– A vertex is an object

• Each vertex uniquely identified with a name
• Each vertex has a modifiable value

– Directed edges: links to other objects
• Associated with source vertex
• Each edge has a modifiable value
• Each edge has a target vertex identifier

14

http://googleresearch.blogspot.com/2009/06/large-scale-graph-computing-at-google.html

9

2

14

1

2

5

11
9

8

4

12 2

1 6

10

0

CS 417 © 2023 Paul Krzyzanow ski



Pregel: computation

Computation: series of supersteps
– Same user-defined function runs on each vertex

• Receives messages sent from the previous superstep
• May modify the state of the vertex or of its outgoing edges
• Sends messages that will be received in the next superstep

– Typically to outgoing edges
– But can be sent to any known vertex

• May modify the graph topology

Each superstep ends with a 
barrier (synchronization point)
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Pregel: termination

• Initially, every vertex is in an active state
– Active vertices compute during a superstep

• Each vertex may choose to deactivate
itself by voting to halt
– The vertex has no more work to do
– Will not be executed by Pregel
– UNLESS the vertex receives a message

• Then it is reactivated
• Will stay active until it votes to halt again

• Algorithm terminates when all vertices are inactive and there are no 
messages in transit
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Pregel: output

Output is the set of values output by the vertices

• Often a directed graph
– May be non-isomorphic to original since edges & vertices can be added or 

deleted

• Or may be summary data
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Examples of graph computations

• Shortest path to a node
– Each iteration, a node sends the shortest distance received to all neighbors

• Cluster identification
– Each iteration: get info about clusters from neighbors
– Add myself
– Pass useful clusters to neighbors (e.g., within a certain depth or size)

• May combine related vertices
• Output is a smaller set of disconnected vertices representing clusters of interest

• Graph mining
– Traverse a graph and accumulate global statistics

• PageRank
– Each iteration: update web page ranks based on messages from incoming links

18CS 417 © 2023 Paul Krzyzanow ski



Simple example: find the maximum value

Each vertex contains a value – we want to find the largest one

• In the first superstep:
– A vertex sends its value to its neighbors

• In each successive superstep:
– If a vertex learned of a larger value from its incoming messages,

it sends it to its neighbors
– Otherwise, it votes to halt

• Eventually, all vertices get the largest value

• When no vertices change in a superstep, the algorithm terminates
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Simple example: find the maximum value

Semi-pseudocode:

20

class MaxValueVertex
    : public Vertex<int, void, int> {
  void Compute(MessageIterator *msgs) {
 int maxv = GetValue();
 for (; !msgs->Done(); msgs->Next())
  maxv = max(msgs.Value(), maxv);

 if (maxv > GetValue()) || (step == 0)) {
  *MutableValue() = maxv;
  OutEdgeIterator out = GetOutEdgeIterator();
  for (; !out.Done(); out.Next())
   sendMessageTo(out.Target(), maxv)
 } else
  VoteToHalt();
 }
  }
};

1. vertex value type;
2. edge value type (none!)
3. message value type

find maximum value

send maximum 
value to all edges
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Simple example: find the maximum value
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3 6 2 1 Superstep 0

Inactive vertexActive vertex

6 6 2 6 Superstep 1

Superstep 0: Each vertex propagates its own value to connected vertices

Superstep 1: V0 updates its value: 6 > 3
   V3 updates its value: 6 > 1
   V1 and V2 do not update so vote to halt

V0 V1 V2 V3
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Simple example: find the maximum value
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3 6 2 1 Superstep 0

Inactive vertexActive vertex

6 6 2 6 Superstep 1

6 6 6 6 Superstep 2

Superstep 2: V1 receives a message – becomes active 
   V3 updates its value: 6 > 2
   V1, V2, and V3 do not update so vote to halt

V0 V1 V2 V3
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Simple example: find the maximum value
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Inactive vertexActive vertex

6 6 6 6 Superstep 2

6 6 6 6 Superstep 3

V0 V1 V2 V3

Superstep 3: V1 receives a message – becomes active 
   V3 receives a message – becomes active
   No vertices update their value – all vote to halt
Done!
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Summary: find the maximum value
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Locality

• Vertices and edges remain on the machine that does the computation

• To run the same algorithm in MapReduce 
– Requires chaining multiple MapReduce operations
– Entire graph state must be passed from Map to Reduce

… and again as input to the next Map
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Pregel API: Basic operations

A user subclasses a Vertex class

Methods:
– Compute(MessageIterator*): Executed per active vertex in each superstep

• MessageIterator identifies incoming messages from the previous superstep

– GetValue(): Get the current value of the vertex

– MutableValue(): Set the value of the vertex

– GetOutEdgeIterator(): Get a list of outgoing edges
• .Target(): identify target vertex on an edge
• .GetValue(): get the value of the edge
• .MutableValue(): set the value of the edge

– SendMessageTo(): send a message to a vertex
• Any number of messages can be sent
• Ordering among messages is not guaranteed
• A message can be sent to any vertex (but our vertex needs to have its ID)
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Pregel API: Special operations

Combiners
• Each message has an overhead – let’s reduce # of messages

– Many vertices are processed per worker (multi-threaded)
– Pregel can combine messages targeted to one vertex into one message

• Combiners are application specific
– Programmer subclasses a Combiner class and overrides Combine() method

• No guarantee on which messages will be combined
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Combiner
Sums input messages

4
8
1
5
6
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Combiner
Minimum value

15
12
71
11
15

11
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Pregel API: Special operations

Aggregators

• Handle global data

• A vertex can provide a value to an aggregator during a superstep
– Aggregator combines received values to one value
– Value is available to all vertices in the next superstep

• User subclasses an Aggregator class

• Examples
– Keep track of total edges in a graph
– Generate histograms of graph statistics
– Global flags: execute until some global condition is satisfied
– Election: find the minimum or maximum vertex
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Pregel API: Special operations

Topology modification

• Examples
– If we’re computing a spanning tree: remove unneeded edges
– If we’re clustering: combine vertices into one vertex

• Add/remove edges/vertices

• Modifications visible in the next superstep
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Pregel Design
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Execution environment

• Many copies of the program
are started on a cluster of machines

• One copy becomes the master
– Will not be assigned a portion of the graph
– Responsible for coordination
– The rest will be workers

• Chubby is used as a name server for the cluster
– Master registers itself with the name service
– Workers contact the name service 

to find the master
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Rack
40-80 computers

Cluster
1,000s to 10,000+ computers
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Partition assignment

• Master
– Determines # partitions in graph
– One or more partitions assigned to each worker

• Partition = set of vertices
• Default for N partitions: hash(vertex ID) mod N ⇒ worker

May deviate: e.g., place vertices representing the same web site in one partition
• Multiple partitions are assigned per worker: this improves load balancing

• Worker
– Responsible for its section(s) of the graph
– Each worker knows the vertex assignments of other workers
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Input assignment

• Master assigns parts of the input to each worker
– Data usually sits in GFS or Bigtable

• Input = set of records
– Record = vertex data and edges
– Assignment based on file boundaries

• Worker reads input
– If it belongs to vertices it manages, local data structures are updated
– Else worker sends messages to remote workers

• After data is loaded, all vertices are active
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Computation

• Master tells each worker to perform a superstep

• Worker:
– Iterates through vertices (one thread per partition)
– Calls Compute() method for each active vertex
– Delivers messages from the previous superstep
– Outgoing messages

• Sent asynchronously
• Delivered before the end of the superstep

• When done
– worker tells master how many vertices will be active in the next superstep

• Computation done when no more active vertices in the cluster
– Master may instruct workers to save their portion of the graph
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Compute

Deliver messages

Superstep done
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Handling failure

• Checkpointing
– Controlled by master … every N supersteps
– Master asks a worker to checkpoint at the start of a superstep

• Save state of partitions to persistent storage
– Vertex values, Edge values, Incoming messages

– Master is responsible for saving aggregator values

• Failure detection: master sends ping messages to workers
– If worker does not receive a ping within a time period ⇒ Worker terminates
– If the master does not hear from a worker ⇒ Master marks worker as failed

• Restart: when failure is detected
– Master reassigns partitions to the current set of workers
– All workers reload partition state from most recent checkpoint
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Pregel outside of Google

Apache Giraph
– Initially created at Yahoo

– Used at LinkedIn & Facebook to analyze 
the social graphs of users
• Facebook is the main contributor to Giraph
• Facebook analyzed 1 trillion edges via 200 machines in 4 minutes

– Runs under Hadoop MapReduce framework
• Runs as a Map-only job
• Adds fault-tolerance to the master by using ZooKeeper for coordination
• Uses Java instead of C++
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= Chubby
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Conclusion

Vertex-centric approach to BSP

• Computation = set of supersteps
– Compute() called on each vertex per superstep
– Communication between supersteps: barrier synchronization

• Hides distribution from the programmer
– Framework creates lots of workers
– Distributes partitions among workers
– Reads graph input
– Handles message sending, receipt, and synchronization
– A programmer just has to think from the viewpoint of a vertex

• Checkpoint-based fault tolerance
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The End
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