
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 10: Large-Scale Data Processing
 Part 2: Bulk Synchronous Parallel & Pregel

© 2023 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

MapReduce isn’t always the answer

MapReduce works well for certain problems
– The framework provides

• Automatic parallelization
• Automatic job distribution

For others:
– May require many iterations of MapReduce
– Data locality usually not preserved between Map and Reduce

• Lots of communication between map and reduce workers

2CS 417 © 2023 Paul Krzyzanow ski

Bulk Synchronous Parallel (BSP)

Created as a computing model for parallel computation

Execution is a series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization

3

Initial data

Initial data

Initial data

Initial data

Compute

Compute

Compute

Compute

B
ar

rie
r

Input msgs

Input msgs

Input msgs

Input msgs

Compute

Compute

Compute

Compute

B
ar

rie
r

Input msgs

Input msgs

Input msgs

Input msgs

Superstep 0 Superstep 1
CS 417 © 2023 Paul Krzyzanow ski

Bulk Synchronous Parallel (BSP)

4

Superstep 0 Superstep 1 Superstep 2 Superstep 3 Superstep 4 Superstep 5

CS 417 © 2023 Paul Krzyzanow ski

Bulk Synchronous Parallel (BSP)

Series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization

5

• Processes (workers) are randomly assigned to
processors

• Each process uses only local data

• Each computation is asynchronous of other concurrent
computation

• Computation time may vary

CS 417 © 2023 Paul Krzyzanow ski

Initial data

Initial data

Initial data

Initial data

Compute

Compute

Compute

Compute

B
ar

rie
r

Input msgs

Input msgs

Input msgs

Input msgs

Compute

Compute

Compute

Compute

B
ar

rie
r

Input msgs

Input msgs

Input msgs

Input msgs

Superstep 0 Superstep 1

Bulk Synchronous Parallel (BSP)

Series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization

6

• Incoming messages are received at the start of a superstep
• Messaging are sent by a process during a superstep
• Each process may send a message to 0 or more processes

• These messages become inputs for the next superstep

End of superstep: Messages
received by all workers

Start of next superstep:
Messages delivered to all workers

CS 417 © 2023 Paul Krzyzanow ski

Initial data

Initial data

Initial data

Initial data

Compute

Compute

Compute

Compute

B
ar

rie
r

Input msgs

Input msgs

Input msgs

Input msgs

Compute

Compute

Compute

Compute

B
ar

rie
r

Input msgs

Input msgs

Input msgs

Input msgs

Superstep 0 Superstep 1

Bulk Synchronous Parallel (BSP)

Series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization

7

• The next superstep does not begin until all messages
have been received

• Barriers ensure no deadlock: no circular dependency can
be created

• Provide an opportunity to checkpoint results for fault
tolerance
– If there's a failure, restart computation from the last superstep

CS 417 © 2023 Paul Krzyzanow ski

Initial data

Initial data

Initial data

Initial data

Compute

Compute

Compute

Compute

B
ar

rie
r

Input msgs

Input msgs

Input msgs

Input msgs

Compute

Compute

Compute

Compute

B
ar

rie
r

Input msgs

Input msgs

Input msgs

Input msgs

Superstep 0 Superstep 1

BSP Implementation: Apache Hama

• Hama: BSP framework on top of HDFS
– Provides automatic parallelization & distribution
– Uses Hadoop RPC

• Data is serialized with Google Protocol Buffers
– Zookeeper for coordination (Apache version of Google’s Chubby)

• Handles notifications for Barrier Sync

• Good for applications with data locality
– Matrices and graphs
– Algorithms that require a lot of iterations

8

hama.apache.org

CS 417 © 2023 Paul Krzyzanow ski

Hama programming (high-level)

• Pre-processing
– Define the number of peers for the job
– Split initial inputs for each of the peers to run their supersteps
– Framework assigns a unique ID to each worker (peer)

• Superstep: the worker function is a superstep
– getCurrentMessage() – input messages from previous superstep
– Compute – your code
– send(peer, msg) – send messages to a peer
– sync() – synchronize with other peers (barrier)

• File I/O
– Key/value model used by Hadoop MapReduce & HBase
– readNext(key, value)
– write(key, value)

9

Google Bigtable

CS 417 © 2023 Paul Krzyzanow ski

For more information

• Architecture, examples, API

• Take a look at:
– Apache Hama project page

• http://hama.apache.org
– Hama BSP tutorial

• https://hama.apache.org/hama_bsp_tutorial.html
– Apache Hama Programming document

• http://bit.ly/1aiFbXS
http://people.apache.org/~tjungblut/downloads/hamadocs/ApacheHamaBSPProgrammingmodel_06.pdf

10CS 417 © 2023 Paul Krzyzanow ski

Graph computing

11CS 417 © 2023 Paul Krzyzanow ski

Graphs are common in computing

• Social links
– Friends
– Academic citations
– Music
– Movies

• Web pages

• Network connectivity

• Roads

• Disease outbreaks

12CS 417 © 2023 Paul Krzyzanow ski

Processing graphs on a large scale is hard

• Computation with graphs
– Poor locality of memory access
– Little work per vertex

• Distribution across machines
– Communication complexity
– Failure concerns

• Solutions
– Application-specific, custom solutions
– MapReduce or databases

• The <key,value> view of the world isn't the most natural for graphs
• But require many iterations (and a lot of data movement)

– Single-computer libraries: limits scale
– Parallel libraries: do not address fault tolerance
– BSP: close but too general

13CS 417 © 2023 Paul Krzyzanow ski

Pregel: a vertex-centric BSP

Input: directed graph
– A vertex is an object

• Each vertex uniquely identified with a name
• Each vertex has a modifiable value

– Directed edges: links to other objects
• Associated with source vertex
• Each edge has a modifiable value
• Each edge has a target vertex identifier

14

http://googleresearch.blogspot.com/2009/06/large-scale-graph-computing-at-google.html

9

2

14

1

2

5

11
9

8

4

12 2

1 6

10

0

CS 417 © 2023 Paul Krzyzanow ski

Pregel: computation

Computation: series of supersteps
– Same user-defined function runs on each vertex

• Receives messages sent from the previous superstep
• May modify the state of the vertex or of its outgoing edges
• Sends messages that will be received in the next superstep

– Typically to outgoing edges
– But can be sent to any known vertex

• May modify the graph topology

Each superstep ends with a
barrier (synchronization point)

15CS 417 © 2023 Paul Krzyzanow ski

9

2

14
2

11

1 6

10

0

Pregel: termination

• Initially, every vertex is in an active state
– Active vertices compute during a superstep

• Each vertex may choose to deactivate
itself by voting to halt
– The vertex has no more work to do
– Will not be executed by Pregel
– UNLESS the vertex receives a message

• Then it is reactivated
• Will stay active until it votes to halt again

• Algorithm terminates when all vertices are inactive and there are no
messages in transit

16CS 417 © 2023 Paul Krzyzanow ski

Active

Inactive

vote
to halt

received
message

Vertex
State Machine

Pregel: output

Output is the set of values output by the vertices

• Often a directed graph
– May be non-isomorphic to original since edges & vertices can be added or

deleted

• Or may be summary data

17CS 417 © 2023 Paul Krzyzanow ski

Examples of graph computations

• Shortest path to a node
– Each iteration, a node sends the shortest distance received to all neighbors

• Cluster identification
– Each iteration: get info about clusters from neighbors
– Add myself
– Pass useful clusters to neighbors (e.g., within a certain depth or size)

• May combine related vertices
• Output is a smaller set of disconnected vertices representing clusters of interest

• Graph mining
– Traverse a graph and accumulate global statistics

• PageRank
– Each iteration: update web page ranks based on messages from incoming links

18CS 417 © 2023 Paul Krzyzanow ski

Simple example: find the maximum value

Each vertex contains a value – we want to find the largest one

• In the first superstep:
– A vertex sends its value to its neighbors

• In each successive superstep:
– If a vertex learned of a larger value from its incoming messages,

it sends it to its neighbors
– Otherwise, it votes to halt

• Eventually, all vertices get the largest value

• When no vertices change in a superstep, the algorithm terminates

19CS 417 © 2023 Paul Krzyzanow ski

Simple example: find the maximum value

Semi-pseudocode:

20

class MaxValueVertex
 : public Vertex<int, void, int> {
 void Compute(MessageIterator *msgs) {
 int maxv = GetValue();
 for (; !msgs->Done(); msgs->Next())
 maxv = max(msgs.Value(), maxv);

 if (maxv > GetValue()) || (step == 0)) {
 *MutableValue() = maxv;
 OutEdgeIterator out = GetOutEdgeIterator();
 for (; !out.Done(); out.Next())
 sendMessageTo(out.Target(), maxv)
 } else
 VoteToHalt();
 }
 }
};

1. vertex value type;
2. edge value type (none!)
3. message value type

find maximum value

send maximum
value to all edges

CS 417 © 2023 Paul Krzyzanow ski

Simple example: find the maximum value

21

3 6 2 1 Superstep 0

Inactive vertexActive vertex

6 6 2 6 Superstep 1

Superstep 0: Each vertex propagates its own value to connected vertices

Superstep 1: V0 updates its value: 6 > 3
 V3 updates its value: 6 > 1
 V1 and V2 do not update so vote to halt

V0 V1 V2 V3

CS 417 © 2023 Paul Krzyzanow ski

Simple example: find the maximum value

22

3 6 2 1 Superstep 0

Inactive vertexActive vertex

6 6 2 6 Superstep 1

6 6 6 6 Superstep 2

Superstep 2: V1 receives a message – becomes active
 V3 updates its value: 6 > 2
 V1, V2, and V3 do not update so vote to halt

V0 V1 V2 V3

CS 417 © 2023 Paul Krzyzanow ski

Simple example: find the maximum value

23

Inactive vertexActive vertex

6 6 6 6 Superstep 2

6 6 6 6 Superstep 3

V0 V1 V2 V3

Superstep 3: V1 receives a message – becomes active
 V3 receives a message – becomes active
 No vertices update their value – all vote to halt
Done!

CS 417 © 2023 Paul Krzyzanow ski

Summary: find the maximum value

24

3 6 2 1 Superstep 0

Inactive vertexActive vertex

6 6 2 6 Superstep 1

6 6 6 6 Superstep 2

6 6 6 6 Superstep 3

V0 V1 V2 V3

CS 417 © 2023 Paul Krzyzanow ski

Locality

• Vertices and edges remain on the machine that does the computation

• To run the same algorithm in MapReduce
– Requires chaining multiple MapReduce operations
– Entire graph state must be passed from Map to Reduce

… and again as input to the next Map

25CS 417 © 2023 Paul Krzyzanow ski

Pregel API: Basic operations

A user subclasses a Vertex class

Methods:
– Compute(MessageIterator*): Executed per active vertex in each superstep

• MessageIterator identifies incoming messages from the previous superstep

– GetValue(): Get the current value of the vertex

– MutableValue(): Set the value of the vertex

– GetOutEdgeIterator(): Get a list of outgoing edges
• .Target(): identify target vertex on an edge
• .GetValue(): get the value of the edge
• .MutableValue(): set the value of the edge

– SendMessageTo(): send a message to a vertex
• Any number of messages can be sent
• Ordering among messages is not guaranteed
• A message can be sent to any vertex (but our vertex needs to have its ID)

26CS 417 © 2023 Paul Krzyzanow ski

Pregel API: Special operations

Combiners
• Each message has an overhead – let’s reduce # of messages

– Many vertices are processed per worker (multi-threaded)
– Pregel can combine messages targeted to one vertex into one message

• Combiners are application specific
– Programmer subclasses a Combiner class and overrides Combine() method

• No guarantee on which messages will be combined

27

Combiner
Sums input messages

4
8
1
5
6

24

Combiner
Minimum value

15
12
71
11
15

11

CS 417 © 2023 Paul Krzyzanow ski

Pregel API: Special operations

Aggregators

• Handle global data

• A vertex can provide a value to an aggregator during a superstep
– Aggregator combines received values to one value
– Value is available to all vertices in the next superstep

• User subclasses an Aggregator class

• Examples
– Keep track of total edges in a graph
– Generate histograms of graph statistics
– Global flags: execute until some global condition is satisfied
– Election: find the minimum or maximum vertex

28CS 417 © 2023 Paul Krzyzanow ski

Pregel API: Special operations

Topology modification

• Examples
– If we’re computing a spanning tree: remove unneeded edges
– If we’re clustering: combine vertices into one vertex

• Add/remove edges/vertices

• Modifications visible in the next superstep

29CS 417 © 2023 Paul Krzyzanow ski

Pregel Design

30CS 417 © 2023 Paul Krzyzanow ski

Execution environment

• Many copies of the program
are started on a cluster of machines

• One copy becomes the master
– Will not be assigned a portion of the graph
– Responsible for coordination
– The rest will be workers

• Chubby is used as a name server for the cluster
– Master registers itself with the name service
– Workers contact the name service

to find the master

31

Rack
40-80 computers

Cluster
1,000s to 10,000+ computers

CS 417 © 2023 Paul Krzyzanow ski

Partition assignment

• Master
– Determines # partitions in graph
– One or more partitions assigned to each worker

• Partition = set of vertices
• Default for N partitions: hash(vertex ID) mod N ⇒ worker

May deviate: e.g., place vertices representing the same web site in one partition
• Multiple partitions are assigned per worker: this improves load balancing

• Worker
– Responsible for its section(s) of the graph
– Each worker knows the vertex assignments of other workers

32CS 417 © 2023 Paul Krzyzanow ski

Input assignment

• Master assigns parts of the input to each worker
– Data usually sits in GFS or Bigtable

• Input = set of records
– Record = vertex data and edges
– Assignment based on file boundaries

• Worker reads input
– If it belongs to vertices it manages, local data structures are updated
– Else worker sends messages to remote workers

• After data is loaded, all vertices are active

33CS 417 © 2023 Paul Krzyzanow ski

Computation

• Master tells each worker to perform a superstep

• Worker:
– Iterates through vertices (one thread per partition)
– Calls Compute() method for each active vertex
– Delivers messages from the previous superstep
– Outgoing messages

• Sent asynchronously
• Delivered before the end of the superstep

• When done
– worker tells master how many vertices will be active in the next superstep

• Computation done when no more active vertices in the cluster
– Master may instruct workers to save their portion of the graph

34

Send messages

Compute

Deliver messages

Superstep done

CS 417 © 2023 Paul Krzyzanow ski

Handling failure

• Checkpointing
– Controlled by master … every N supersteps
– Master asks a worker to checkpoint at the start of a superstep

• Save state of partitions to persistent storage
– Vertex values, Edge values, Incoming messages

– Master is responsible for saving aggregator values

• Failure detection: master sends ping messages to workers
– If worker does not receive a ping within a time period ⇒ Worker terminates
– If the master does not hear from a worker ⇒ Master marks worker as failed

• Restart: when failure is detected
– Master reassigns partitions to the current set of workers
– All workers reload partition state from most recent checkpoint

35CS 417 © 2023 Paul Krzyzanow ski

Pregel outside of Google

Apache Giraph
– Initially created at Yahoo

– Used at LinkedIn & Facebook to analyze
the social graphs of users
• Facebook is the main contributor to Giraph
• Facebook analyzed 1 trillion edges via 200 machines in 4 minutes

– Runs under Hadoop MapReduce framework
• Runs as a Map-only job
• Adds fault-tolerance to the master by using ZooKeeper for coordination
• Uses Java instead of C++

36

= Chubby

CS 417 © 2023 Paul Krzyzanow ski

https://www.facebook.com/notes/facebook-engineering/scaling-apache-giraph-to-a-trillion-edges/10151617006153920

Conclusion

Vertex-centric approach to BSP

• Computation = set of supersteps
– Compute() called on each vertex per superstep
– Communication between supersteps: barrier synchronization

• Hides distribution from the programmer
– Framework creates lots of workers
– Distributes partitions among workers
– Reads graph input
– Handles message sending, receipt, and synchronization
– A programmer just has to think from the viewpoint of a vertex

• Checkpoint-based fault tolerance

37CS 417 © 2023 Paul Krzyzanow ski

The End

38CS 417 © 2023 Paul Krzyzanow ski

	Slide 1
	Slide 2: MapReduce isn’t always the answer
	Slide 3: Bulk Synchronous Parallel (BSP)
	Slide 4: Bulk Synchronous Parallel (BSP)
	Slide 5: Bulk Synchronous Parallel (BSP)
	Slide 6: Bulk Synchronous Parallel (BSP)
	Slide 7: Bulk Synchronous Parallel (BSP)
	Slide 8: BSP Implementation: Apache Hama
	Slide 9: Hama programming (high-level)
	Slide 10: For more information
	Slide 11: Graph computing
	Slide 12: Graphs are common in computing
	Slide 13: Processing graphs on a large scale is hard
	Slide 14: Pregel: a vertex-centric BSP
	Slide 15: Pregel: computation
	Slide 16: Pregel: termination
	Slide 17: Pregel: output
	Slide 18: Examples of graph computations
	Slide 19: Simple example: find the maximum value
	Slide 20: Simple example: find the maximum value
	Slide 21: Simple example: find the maximum value
	Slide 22: Simple example: find the maximum value
	Slide 23: Simple example: find the maximum value
	Slide 24: Summary: find the maximum value
	Slide 25: Locality
	Slide 26: Pregel API: Basic operations
	Slide 27: Pregel API: Special operations
	Slide 28: Pregel API: Special operations
	Slide 29: Pregel API: Special operations
	Slide 30: Pregel Design
	Slide 31: Execution environment
	Slide 32: Partition assignment
	Slide 33: Input assignment
	Slide 34: Computation
	Slide 35: Handling failure
	Slide 36: Pregel outside of Google
	Slide 37: Conclusion
	Slide 38: The End
	Slide 39: Colors

