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Message Processing

How do we design a computing cluster to process huge, never-ending streams of 

messages from multiple sources?
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Apache Kafka

Kafka is 

• Open-source

• High-performance

• Distributed

• Durable

• Fault-tolerant

• Publish-subscribe messaging system

Messages may be anything:

IoT (Internet of Things) reports, logs, alerts, user activity, data pipelines, …
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Publish-Subscribe Messaging

Publishers send streams of messages = producers

Subscribers receive messages = consumers

Message broker = messaging system

– A service that provides a loose coupling between producers & consumers
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Publish-Subscribe Messaging: Message broker

Message broker stores messages in a queue (log)

Subscribers retrieve messages from the queue

– First-in, First-out (FIFO) ordering

– Producers & consumers do not have to be synchronized: read & write at different rates
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Publish-Subscribe Messaging: Multiple topics

We will often have various message streams

– Different purposes – e.g., IoT temperature reports, error logs, page views, …

– Different consumers will be interested in different streams

Streams are identified by a topic

– Publishers send messages to a topic and subscribers subscribe to a topic
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Publish-Subscribe Messaging: Brokers

Kafka runs as a cluster on one or more servers

Each server is called a broker

– A Kafka deployment may have anywhere from 1 to 1000s of brokers

Kafka can feed messages to

– Real-time systems: e.g., Spark Streaming

– Batch processing: e.g., store to Amazon S3 or HDFS & then use MapReduce or Spark
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Scaling: Partitions

Each topic is stored as a partitioned log

– One message log is broken up (partitioned) into multiple smaller logs

– Each chunk is a partition and can be stored on a different server

A partitioned log enables messages for a topic to scale beyond the capacity of a 

single server
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Scaling: Partitions

Partition = ordered, immutable sequence of messages that is continually 

appended to

Each message record contains a sequential ID # to identify 

the message in its partition
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Fault Tolerance & Replication

Messages in a partition are durable: written to disk

– Persist for a configurable time period – then erased

Consensus-based state machine replication (similar to Raft)

– One server is elected to be the leader for a partition

– 0 or more other servers are followers

– Replication amount is configurable

– Leader handles all 

read/write requests

• Data propagated to followers

• Clients do not communicate

with followers
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Fault Tolerance & Replication

What if the leader dies after receiving a message but before replicating it to 

followers?

Producer can choose:

• Receive an acknowledgment when the broker receives a message

or

• Receive an acknowledgment 

only when the message is 

replicated to followers
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Achieving Scale

Producers

• Clients choose which partition to write message to

– Default: round-robin distribution to balance the load evenly across multiple brokers

• Create more partitions for a topic ⇒ more load distribution

Consumers

• Consumer group = one or more consumers

• Group members share the same message queue for the topic
– Messages to the topic get distributed among the members of the consumer group

• More consumers in a group ⇒ more processing capacity
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Queuing vs. Publish-Subscribe

Queuing model

• Pool of consumers that take messages from a shared queue

• When any consumer gets a message, it is out of the queue

• Only one consumer gets each message

• Great for distributing processing among multiple subscribers
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Queuing vs. Publish-Subscribe

Publish-Subscribe model

• Each consumer that subscribes to a topic will get every message for that topic

• Allows multiple clients to share the same data … but does not scale
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Queuing or Publish-Subscribe model? Kafka offers both!

• With consumer groups, consumers can distribute messages among a collection of processes

• Each consumer group provides a publish-subscribe model

– Consumers can join separate groups to receive the same set of messages

Queuing vs. Publish-Subscribe
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Disk storage

Kafka provides durable message logs

• Messages will not be lost if the system dies and restarts

But disks are slow … even SSDs!

• Not necessarily – depends how you use them

• Huge performance difference between random block access and sequential access

• Kafka optimizes for large sequential writes & reads

– Sequential disk operations can be thousands of times 

faster than random access
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Apache Kafka is

• Open-source

– Developed by LinkedIn and donated to the Apache Software Foundation, writteb in Scala and Java

• High-performance

– Scalable to handle huge volumes of incoming messages by partitioning each message queue (log) among multiple 

servers

– Partitioned log enables the log to be larger than the capacity of any one server

– Consumer groups enable the scaling of message processing

• Distributed

– Each message queue (log) is divided among multiple servers

• Durable

– Message logs are written to disk (via large streaming writes for best performance)

• Fault-tolerant

– Support for redundancy with a leader & followers per partition

• Publish-subscribe messaging system

– Publish & subscribe to topics
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Kafka Summary

• Solved the problem of dealing with continuous data streams

• Solves the scaling problem by using partitioned logs

• Supports both single queue & publish-subscribe models

• Message ordering is guaranteed per-partition only

• Well-used, proven performance

Activision, AirBnB, Tinder, Pinterest, Uber, Netflix, LinkedIn, Microsoft, many 

banks, …

See https://kafka.apache.org/powered-by
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The End
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Zookeeper

Kafka uses (required) Apache ZooKeeper for coordination

ZooKeeper ≈ Google Chubby

– Getting heartbeats from brokers

– Leader election

– Configuring replication settings

– Tracking members of cluster

– Etc.

Producers

– Use it to find partitions for a topic

Consumers

– Use it to track the current 

index # (offset) of the next message

in each partition they’re reading
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Since April 2021, Kafka can be configured to run 

without ZooKeeper

• Added support for an internal Raft quorum (reliable 

log replication)

• Metadata can now be stored inside Kafka as a log

– Internal topic called @metadata

– Replicated via Raft

– Brokers can get updates by reading the tail of this 

log



Colors

• Text goes here – link – followed link

• Here is some callout text … and in blue

• Here is some green callout text
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