
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 11: Content Delivery 
 Part 1: Event Streaming – Kafka

© 2023 Paul Krzyzanowski. No part of this 
content may be reproduced or reposted in 
whole or in part in any manner without the 
permission of the copyright owner.



Message Processing

How do we design a computing cluster to process huge, never-ending streams of 

messages from multiple sources?

CS 417 © 2023 Paul Krzyzanow ski 2

U
s
e
r 

a
c
ti
v
it
y

S
y
s
te

m
 l
o
g
s

S
e
n
s
o
r 

d
a
ta

processing

processing

processing

processing

processing

processing

processing

processing

processing



Apache Kafka

Kafka is 

• Open-source

• High-performance

• Distributed

• Durable

• Fault-tolerant

• Publish-subscribe messaging system

Messages may be anything:

IoT (Internet of Things) reports, logs, alerts, user activity, data pipelines, …

CS 417 © 2023 Paul Krzyzanow ski 3



Publish-Subscribe Messaging

Publishers send streams of messages = producers

Subscribers receive messages = consumers

Message broker = messaging system

– A service that provides a loose coupling between producers & consumers

CS 417 © 2023 Paul Krzyzanow ski 4

Publisher

Publisher

Publisher

Publisher

Subscriber

Subscriber

Subscriber

M0

M0

M0

M1M2M3

M4

M5

M6

M7

Message broker

SubscriberM0

SubscriberM0

Producers Consumers



Publish-Subscribe Messaging: Message broker

Message broker stores messages in a queue (log)

Subscribers retrieve messages from the queue

– First-in, First-out (FIFO) ordering

– Producers & consumers do not have to be synchronized: read & write at different rates

CS 417 © 2023 Paul Krzyzanow ski 5

Publisher

Publisher

Publisher

Publisher

Subscriber

Subscriber

Subscriber

M0

M0

M0

M1M2M3

M4

M5

M6

M7

Message broker

SubscriberM0

SubscriberM0

Producers Consumers



Publish-Subscribe Messaging: Multiple topics

We will often have various message streams

– Different purposes – e.g., IoT temperature reports, error logs, page views, …

– Different consumers will be interested in different streams

Streams are identified by a topic

– Publishers send messages to a topic and subscribers subscribe to a topic

CS 417 © 2023 Paul Krzyzanow ski 6

Publisher

Publisher

Publisher

Publisher

Subscriber

Subscriber

Subscriber

M0

M0

M0

M1M2M3

M4

M5

M6

N5

Message broker

SubscriberM0

SubscriberM0
Topic: logs

Topic: alerts

N1N2N3

M3

N4
N0

Producers Consumers



Publish-Subscribe Messaging: Brokers

Kafka runs as a cluster on one or more servers

Each server is called a broker

– A Kafka deployment may have anywhere from 1 to 1000s of brokers

Kafka can feed messages to

– Real-time systems: e.g., Spark Streaming

– Batch processing: e.g., store to Amazon S3 or HDFS & then use MapReduce or Spark

CS 417 © 2023 Paul Krzyzanow ski 7

Publisher

Publisher

Publisher

Publisher

Subscriber

Subscriber

Subscriber

M0

M0

M0

M1M2M3

M4

M5

M6

N5

Message broker

SubscriberM0

SubscriberM0
Topic: logs

Topic: alerts

N1N2N3

M3

N4
N0

Producers Consumers



Scaling: Partitions

Each topic is stored as a partitioned log

– One message log is broken up (partitioned) into multiple smaller logs

– Each chunk is a partition and can be stored on a different server

A partitioned log enables messages for a topic to scale beyond the capacity of a 

single server

CS 417 © 2023 Paul Krzyzanow ski 8

Topic X

S
e

rv
e

r
S

e
rv

e
r

S
e

rv
e

r
S

e
rv

e
r

M0

M10

Partition 0

Partition 1

Partition 2

Partition 3 M14 M13

M4

M9

M1

M2

M5

M3

M11 M8 M7 M6

Earliest messageLatest

M15

Producers
Producers

Producers

Producers
Producers

Consumers



Scaling: Partitions

Partition = ordered, immutable sequence of messages that is continually 

appended to

Each message record contains a sequential ID # to identify 

the message in its partition

CS 417 © 2023 Paul Krzyzanow ski 9

Topic X

S
e

rv
e

r
S

e
rv

e
r

S
e

rv
e

r
S

e
rv

e
r

M0

M10

Partition 0

Partition 1

Partition 2

Partition 3 M14 M13

M4

M9

M1

M2

M5

M3

M11 M8 M7 M6

EarliestLatest

M15

Producers
Producers

Producers

Producers
Producers

Consumers



Fault Tolerance & Replication

Messages in a partition are durable: written to disk

– Persist for a configurable time period – then erased

Consensus-based state machine replication (similar to Raft)

– One server is elected to be the leader for a partition

– 0 or more other servers are followers

– Replication amount is configurable

– Leader handles all 

read/write requests

• Data propagated to followers

• Clients do not communicate

with followers

CS 417 © 2023 Paul Krzyzanow ski 10

M0Partition 0 M1 M2 M3

Leader

M0Partition 0' M1 M2 M3

Follower 0

M0Partition 0'' M1 M2 M3

Follower 1

Write messagesRead messages

Consensus—based replication

Consensus—based replication



Fault Tolerance & Replication

What if the leader dies after receiving a message but before replicating it to 

followers?

Producer can choose:

• Receive an acknowledgment when the broker receives a message

or

• Receive an acknowledgment 

only when the message is 

replicated to followers

CS 417 © 2023 Paul Krzyzanow ski 11

M0Partition 0 M1 M2 M3

Leader

M0Partition 0' M1 M2 M3

Follower 0

M0Partition 0'' M1 M2 M3

Follower 1

Write messagesRead messages



Achieving Scale

Producers

• Clients choose which partition to write message to

– Default: round-robin distribution to balance the load evenly across multiple brokers

• Create more partitions for a topic ⇒ more load distribution

Consumers

• Consumer group = one or more consumers

• Group members share the same message queue for the topic
– Messages to the topic get distributed among the members of the consumer group

• More consumers in a group ⇒ more processing capacity

CS 417 © 2023 Paul Krzyzanow ski 12



Queuing vs. Publish-Subscribe

Queuing model

• Pool of consumers that take messages from a shared queue

• When any consumer gets a message, it is out of the queue

• Only one consumer gets each message

• Great for distributing processing among multiple subscribers

CS 417 © 2023 Paul Krzyzanow ski 13

Subscriber

Subscriber

SubscriberM0

M1

M2

M3M4M5M6

Queuing Model



Queuing vs. Publish-Subscribe

Publish-Subscribe model

• Each consumer that subscribes to a topic will get every message for that topic

• Allows multiple clients to share the same data … but does not scale

CS 417 © 2023 Paul Krzyzanow ski 14

Subscriber

Subscriber

SubscriberM0

M0

M0

M1M2M3M4

Publish-Subscribe Model



Queuing or Publish-Subscribe model? Kafka offers both!

• With consumer groups, consumers can distribute messages among a collection of processes

• Each consumer group provides a publish-subscribe model

– Consumers can join separate groups to receive the same set of messages

Queuing vs. Publish-Subscribe

CS 417 © 2023 Paul Krzyzanow ski 15

Subscriber

Subscriber

SubscriberM0

M0

M0

M1M2M3M4

Publish-Subscribe Model

Subscriber

Subscriber

SubscriberM0

M1

M2

M3M4M5M6

Queuing Model

One consumer group

Separate consumer groups



Disk storage

Kafka provides durable message logs

• Messages will not be lost if the system dies and restarts

But disks are slow … even SSDs!

• Not necessarily – depends how you use them

• Huge performance difference between random block access and sequential access

• Kafka optimizes for large sequential writes & reads

– Sequential disk operations can be thousands of times 

faster than random access

CS 417 © 2023 Paul Krzyzanow ski 16



Apache Kafka is

• Open-source

– Developed by LinkedIn and donated to the Apache Software Foundation, writteb in Scala and Java

• High-performance

– Scalable to handle huge volumes of incoming messages by partitioning each message queue (log) among multiple 

servers

– Partitioned log enables the log to be larger than the capacity of any one server

– Consumer groups enable the scaling of message processing

• Distributed

– Each message queue (log) is divided among multiple servers

• Durable

– Message logs are written to disk (via large streaming writes for best performance)

• Fault-tolerant

– Support for redundancy with a leader & followers per partition

• Publish-subscribe messaging system

– Publish & subscribe to topics

CS 417 © 2023 Paul Krzyzanow ski 17



Kafka Summary

• Solved the problem of dealing with continuous data streams

• Solves the scaling problem by using partitioned logs

• Supports both single queue & publish-subscribe models

• Message ordering is guaranteed per-partition only

• Well-used, proven performance

Activision, AirBnB, Tinder, Pinterest, Uber, Netflix, LinkedIn, Microsoft, many 

banks, …

See https://kafka.apache.org/powered-by

CS 417 © 2023 Paul Krzyzanow ski 18

https://kafka.apache.org/powered-by


The End

19CS 417 © 2023 Paul Krzyzanow ski



Zookeeper

Kafka uses (required) Apache ZooKeeper for coordination

ZooKeeper ≈ Google Chubby

– Getting heartbeats from brokers

– Leader election

– Configuring replication settings

– Tracking members of cluster

– Etc.

Producers

– Use it to find partitions for a topic

Consumers

– Use it to track the current 

index # (offset) of the next message

in each partition they’re reading

CS 417 © 2023 Paul Krzyzanow ski 20

Since April 2021, Kafka can be configured to run 

without ZooKeeper

• Added support for an internal Raft quorum (reliable 

log replication)

• Metadata can now be stored inside Kafka as a log

– Internal topic called @metadata

– Replicated via Raft

– Brokers can get updates by reading the tail of this 

log



Colors

• Text goes here – link – followed link

• Here is some callout text … and in blue

• Here is some green callout text

CS 417 © 2023 Paul Krzyzanow ski 21

Text TextText Text

Text Text Text

Text

Text Text

Link color

Followed Link color

Text Text

Background 

2

Text 2

Text

Text Text Text Text Text Text Text

http://poopybrain.com/
http://pk.org/

	Slide 1
	Slide 2: Message Processing
	Slide 3: Apache Kafka
	Slide 4: Publish-Subscribe Messaging
	Slide 5: Publish-Subscribe Messaging: Message broker
	Slide 6: Publish-Subscribe Messaging: Multiple topics
	Slide 7: Publish-Subscribe Messaging: Brokers
	Slide 8: Scaling: Partitions
	Slide 9: Scaling: Partitions
	Slide 10: Fault Tolerance & Replication
	Slide 11: Fault Tolerance & Replication
	Slide 12: Achieving Scale
	Slide 13: Queuing vs. Publish-Subscribe
	Slide 14: Queuing vs. Publish-Subscribe
	Slide 15: Queuing vs. Publish-Subscribe
	Slide 16: Disk storage
	Slide 17: Apache Kafka is
	Slide 18: Kafka Summary
	Slide 19: The End
	Slide 20: Zookeeper
	Slide 21: Colors

