
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 12: Security in Distributed Systems
 Part 2: Data Integrity

© 2022 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Integrity: Goals
Use cryptographic techniques to detect that data has not been modified

Integrity mechanisms can help to
– Detect data corruption

– Detect malicious data modification

– Prove ownership of data

CS 417 © 2023 Paul Krzyzanowski 2

Message Integrity
How do we detect that a message has been tampered?
• A cryptographic hash acts as a checksum

A hash is a small, fixed amount of information that lets us have
confidence that the data used to create the hash was not modified

• We associate a hash with a message
– we’re not encrypting the message
– we’re concerned with integrity, not confidentiality

• If two messages hash to different values, we know the messages are different
H(M) ≠ H(M′)

CS 417 © 2023 Paul Krzyzanowski 3

Message M hash(M)

Cryptographic hash functions
Properties
– Arbitrary length input → fixed-length output

– Deterministic: you always get the same hash for the same message

– One-way function (pre-image resistance, or hiding)
• Given H, it should be difficult to find M such that H=hash(M)

– Collision resistant
• Infeasible to find any two different strings that hash to the same value:

Find M, M’ such that hash(M) = hash(M’)

– Output should not give any information about any of the input
• Like cryptographic algorithms, relies on diffusion

– Efficient
• Computing a hash function should be computationally efficient

4CS 417 © 2023 Paul Krzyzanowski

Also called digests or
fingerprints

Hash functions are the basis of integrity
• Not encryption
• Can help us to detect:
– Masquerading

Insertion of message from a fraudulent source

– Content modification
Changing the content of a message

– Sequence modification
Inserting, deleting, or rearranging parts of a message

– Replay attacks
Replaying valid sessions

CS 417 © 2023 Paul Krzyzanowski 5

Some Popular Hash Functions
MD5 • 128 bits

• Linux passwords used to use this
• Rarely used now since weaknesses were found

SHA-1 • 160 bits – was widely used: checksum in Git & torrents
• Google demonstrated a collision attack in Feb 2017

… Google had to run >9 quintillion SHA-1 computations to complete the attack
... but already being phased out since weaknesses were found earlier

• Was for message integrity in GitHub (SHA-256 fully supported as of 2023)

SHA-2 Believed to be secure
• Designed by the NSA; published by NIST
• Variations based on bit length: SHA-224, SHA-256, SHA-384, SHA-512
• Linux passwords use SHA-512
• Bitcoin uses SHA-256

SHA-3 Believed to be secure
• 256 & 512 bit

Blowfish • Used for password hashing in OpenBSD

3DES • Linux passwords used to use this

CS 417 © 2023 Paul Krzyzanowski 6

Derived from ciphers

Tamperproof Integrity:
Message Authentication Codes and
Digital Signatures

CS 417 © 2023 Paul Krzyzanowski 7

Message Integrity: MACs
• We rely on hashes to assert the integrity of messages

• An attacker can create a new message M′ & a new hash
and replace H(M) with H(M′)

• So, let’s create a checksum that relies on a key for validation:
Message Authentication Code (MAC) = hash(M, key)

CS 417 © 2023 Paul Krzyzanowski 8

"Hello, Jib!"

Hash=a8e02b1…

"Hello, Jab!"

Hash=4d77ea1…

Message Authentication Codes (MAC)
Hash of message and a symmetric key:
An intruder will not be able to replace the hash value
– You need to have the key and the message to recreate the hash

MACs provide message integrity
• The hash assures us that the original message has not been modified
• The encryption of the hash assures us that an attacker could not have re-

created the hash

CS 417 © 2023 Paul Krzyzanowski 9

Digital Signatures
Create a hash that anyone can verify but only the owner can create:

Hash of message encrypted with the owner’s private key

• Alice encrypts the hash with her private key
• Bob validates by decrypting it with her public key &

comparing with a hash of the message

Digital signatures add non-repudiation
• Only Alice could have created the signature because

only Alice has her private key

CS 417 © 2023 Paul Krzyzanowski 10

Digital Signature Primitives
1. Key generation: { signing_key, verification_key } := gen_keys(key_size)

signing_key = private_key, k
verification_key = public_key, K

2. Signing: signature := sign(message, private_key)
signature := sign(message, private_key)
⇒ signature := Ek(hash(message))

The signature uses a hash(message) instead of the message
• We’d like the signature to be a small, fixed size
• We are not hiding the contents of the message
• We trust hashes to be collision-free

3. Validation: verify(verification_key, message, signature)
DK(signature) ≟ hash(message)

CS 417 © 2023 Paul Krzyzanowski 11

Alice Bob

Alice generates a hash of the message, H(P)

CS 417 © 2023 Paul Krzyzanowski 12

Digital signatures

H(P)

H(P)

Alice Bob

Alice encrypts the hash with her private key
This is her signature.

CS 417 © 2023 Paul Krzyzanowski 13

Digital signatures: public key cryptography

S=Ea(H(P))

H(P)

Alice Bob

Alice sends Bob the message & the encrypted hash

CS 417 © 2023 Paul Krzyzanowski 14

Using Digital Signatures

S=Ea(H(P))

modification?

H(P)

Alice Bob

1. Bob decrypts the hash using Alice’s public key
2. Bob computes the hash of the message sent by Alice

CS 417 © 2023 Paul Krzyzanowski 15

Using Digital Signatures

S=Ea(H(P))

H(P)

DA(S)

modification?

H(P)

Alice Bob

If the hashes match, the signature is valid
⇒ the encrypted hash must have been generated by Alice

CS 417 © 2023 Paul Krzyzanowski 16

Using Digital Signatures

S=Ea(H(P))

H(P)

DA(S)

modification?

Digital signatures & non-repudiation

• Digital signatures provide non-repudiation
– Only Alice could have created the signature because only Alice has her

private key

• Proof of integrity
– The hash assures us that the original message has not been modified
– The encryption of the hash assures us that an attacker could not have

re-created the hash

17CS 417 © 2023 Paul Krzyzanowski

Alice Bob

Charles:
• Generates a hash of the message, H(P)
• Decrypts Alice’s signature with Alice’s public key

- Validates the signature: DA(S) ≟ H(P)
• Decrypts Bob’s signature with Bob’s public key

- Validates the signature: DB(S) ≟ H(P)
CS 417 © 2023 Paul Krzyzanowski 18

Digital signatures: multiple signers

H(P)

DA(S)

H(P)

S=Ea(H(P))

Charles

S’=Eb(H(P))

H(P)

DA(S)
DB(S’)

Digital Signature Algorithms
While encrypting a hash with a private key produces a digital signature, there are dedicated
algorithms that use public key cryptography to produce and validate signatures
• RSA – based on RSA cryptography & keys
– Difficulty based on factoring products of primes

• DSA (Digital Signature Algorithm)
– Developed by NIST (National Institute of Standards and Technology)
– Difficulty based on discrete logarithms & modular exponentiation

• ECDSA, EdDSA: Elliptic Curve Digital Signature Algorithm
– Difficulty based on discrete logarithms on elliptic curves
– (EdDSA = Edwards curve DSA – uses Twisted Edwards curves)
– Newest & fastest signature algorithm

CS 417 © 2023 Paul Krzyzanowski 19

Covert AND authenticated messaging
If we want to keep the message secret
– combine encryption with a digital signature

Use a session key:

– Pick a random key, K, to encrypt the message with a symmetric algorithm

– Encrypt K with the public key of each recipient

– For signing, encrypt the hash of the message with sender’s private key

20CS 417 © 2023 Paul Krzyzanowski

H(M)

Alice

Alice generates a digital signature by
encrypting the message with her private key

CS 417 © 2023 Paul Krzyzanowski 21

Covert and authenticated messaging

S=Ea(H(M))

H(M)

Alice

Alice picks a random key, K, and encrypts the message M
with it using a symmetric cipher

CS 417 © 2023 Paul Krzyzanowski 22

Covert and authenticated messaging

S=Ea(H(M))

C=EK(M)

H(M)

Alice

Alice encrypts the session key for each
recipient of this message using their public keys

CS 417 © 2023 Paul Krzyzanowski 23

Covert and authenticated messaging

S=Ea(H(M))

K K
C1=EB(K)

K
C2=EC(K)

for Charles

C=EK(M)

H(M)

Alice Bob

The aggregate message is sent to Bob & Charles
CS 417 © 2023 Paul Krzyzanowski 24

Covert and authenticated messaging

S=Ea(H(M))

K K
C1=EB(K)

K
C2=EC(K)

Message:
M

Signature:

Sender: Alice

Key for Bob: K

KKey for Charles:

Bob

Charles

The End

25CS 417 © 2023 Paul Krzyzanowski

