
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 13: Infrastructure
Part 3: High Performance Computing

(HPC) Clusters

© 2022 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

• Performance
– 442 petaflops
– Fujitsu A64FX SoC processors: 7.6 million ARM cores

• OS
– Compute nodes run McKernel (lightweight kernel designed for

HPC) – a few hundred lines of C++
– Communicate with I/O nodes that run Linux

• Communication
– Torus Fusion (tofu) – proprietary interconnect developed by Fujitsu

• 6-dimensional mesh/torus topology – full-duplex link with peak
bandwidth of 5 GB/s in each direction

• Storage
– 1.6 TB NVMe SSD for every 16 nodes
– 150 PB shared storage – Lustre FS

• Cost: ~ US$ 1B

CS 417 © 2022 Paul Krzyzanowski 2

Supercomputers
2021's most powerful supercomputer: Fugaku富岳 – Japan – developed by RIKEN & Fujitsu

https://en.wikipedia.org/wiki/Fugaku_(supercomputer)

Supercomputers
2018’s Most powerful supercomputer:
IBM AC922 – Summit at Oak Ridge National Laboratory

CS 417 © 2022 Paul Krzyzanowski 3

• 189 petaflops, >10PB memory
• 4,608 nodes
– 6 NVIDIA Volta V100s GPUs
– 2 IBM POWER9™ CPUs
– 512 GB DDR4 + 96GB HBM2 RAM
– 1600GB NV memory
– 42 teraflops per node

• 100G InfiniBand interconnect
• 250 PB 2.5 TB/s file system
• OS: Red Hat Enterprise Linux
• Peak power consumption: 13 MW

See https://www.olcf.ornl.gov/summit/

>27,000 GPUs
>9,000 CPUs

• Supercomputers are not distributed computers

• Lots of processors connected by high-speed networks

• Shared memory access

• Shared operating system (all TOP500 run Linux)

CS 417 © 2022 Paul Krzyzanowski 4

Supercomputing clusters
• Supercomputing cluster
– Build a supercomputer from commodity computers & networks
– A distributed system

• Target complex, typically
scientific, applications:
– Large amounts of data
– Lots of computation
– Parallelizable application

• Many custom efforts
– Typically Linux + message passing software + remote exec + remote monitoring

CS 417 © 2022 Paul Krzyzanowski 5

Cluster Interconnects

6CS 417 © 2022 Paul Krzyzanowski

Cluster Interconnect

Goals
– Low latency
• Avoid OS overhead, layers of protocols,

retransmission, etc.
– High bandwidth
• High bandwidth, switched links
• Avoid overhead of sharing traffic with non-

cluster data
– Low CPU overhead
– Low cost
• Cost usually matters if you’re connecting

thousands of machines

• Usually a LAN is used:
best $/performance ratio

7

Rack 1
40-80 computers

Cluster
1,000s to 10,000+ computers

switch switch switch

Rack 2 Rack N

switch switch

ISPs

Datacenter

CS 417 © 2022 Paul Krzyzanowski

Provide communication between nodes in a cluster

Cluster Interconnect

8

Cluster of 4×4 racks

Cluster
Switch

Assume:
10 Gbps per server
40 servers per rack
⇒ 400 Gbps/rack

16 racks ⇒ 8 Tbps

Max switch capacity
currently ~ 5 Tbps
⇒ Need at least two

cluster switches

CS 417 © 2022 Paul Krzyzanowski

Switches add latency
Within one rack
– One switch latency ≈ <1…8 μs for a 10 Gbps switch
– Two links (to switch + from switch) @ 1-2 meters of cable
• Propagation time in copper ≈ 2×108 m/s ≈ 5 ns/m

Between racks in a cluster
– Three switch latency (≈ <3…24 μs)
– 4 links (to rack switch + to cluster switch + back to target rack)
– ~10-100 meters distance (50 … 500 ns)

Add to that the normal latency of sending & receiving packets:
– System latency of processing the packet, OS mode switch, queuing the packet, copying data to the

transceiver, …
– Serialization delay = time to copy packet to media ≈ 1 μs for a 1KB packet on a 10 Gbps link

9CS 417 © 2022 Paul Krzyzanowski

Dedicated cluster interconnects
TCP adds latency
• Operating system overhead, queueing, checksums, acknowledgements,

congestion control, fragmentation & reassembly, …
• Lots of interrupts
• Consumes time & CPU resources

How about using a high-speed LAN without the overhead?
• LAN dedicated for intra-cluster communication
– Sometimes known as a System Area Network (SAN)

• Dedicated network for storage: Storage Area Network (SAN)

10CS 417 © 2022 Paul Krzyzanowski

Example High-Speed Interconnects
Common traits
– TCP/IP Offload Engines (TOE)

– TCP stack at the network card
– Remote Direct Memory Access (RDMA)

– memory copy with no CPU involvement

Intel I/O Acceleration Technology (I/OAT) –
combines TOE & RDMA
–Data copy without CPU, TCP packet coalescing, low-

latency interrupts, …

11CS 417 © 2022 Paul Krzyzanowski

Example High-Speed Interconnects
Example: InfiniBand
– Switch-based point-to-point bidirectional serial links
– Link processors, I/O devices, and storage
– Each link has one device connected to it
– Enables data movement via remote direct memory access (RDMA)
• No CPU involvement!

– Up to 250 Gbps/link
• Links can be aggregated: up to 3000 Gbps with 12x links

IEEE 802.1 Data Center Bridging (DCB)
– Set of standards that extend Ethernet
– Lossless data center transport layer
• Priority-based flow control, congestion notification, bandwidth management

12CS 417 © 2022 Paul Krzyzanowski

Programming tools for HPC: PVM

PVM = Parallel Virtual Machine
• Software that emulates a general-purpose heterogeneous computing

framework on interconnected computers

• Model: app = set of tasks
– Functional parallelism: tasks based on function: input, solve, output
– Data parallelism: tasks are the same but work on different data

• PVM presents library interfaces to:
– Create tasks
– Use global task IDs
– Manage groups of tasks
– Pass basic messages between tasks

13CS 417 © 2022 Paul Krzyzanowski

Programming tools: MPI
MPI: Message Passing Interface
• API for sending/receiving messages
– Optimizations for shared memory & NUMA
– Group communication support

• Other features:
– Scalable file I/O
– Dynamic process management
– Synchronization (barriers)
– Combining results

14CS 417 © 2022 Paul Krzyzanowski

HPC Cluster Example
Early example: Early (>20 years old!) effort on Linux – Beowulf
– Initially built to address problems associated with large data sets in Earth

and Space Science applications
– From Center of Excellence in Space Data & Information Sciences (CESDIS)
• Division of University Space Research Association at the Goddard Space Flight

Center
– Still used!

This isn’t one fixed package
– Just an example of putting tools together to create a supercomputer from

commodity hardware

15CS 417 © 2022 Paul Krzyzanowski

What makes it possible?
• Commodity off-the-shelf computers are cost effective

• Publicly available software:
– Linux, GNU compilers & tools
– MPI (message passing interface)
– PVM (parallel virtual machine)

• Low cost, high speed networking

• Experience with parallel software
– Difficult: solutions tend to be custom

16CS 417 © 2022 Paul Krzyzanowski

What can you run?
• Programs that do not require fine-grain communication

• Basic properties
– Nodes are dedicated to the cluster
• Performance of nodes not subject to external factors

– Interconnect network isolated from external network
• Network load is determined only by application

– Global process ID provided
• Global signaling mechanism

17CS 417 © 2022 Paul Krzyzanowski

HPC Cluster Example
• 18 admin tools
• 3 compiler families (GNU, Intel, LLVM)
• 13 development tool packages (EasyBuild, cbuild, libtool, …)
• Lua scripting language & supporting packages
• 8 I/O libraries
– Adios – enables defining how data is accessed
– HDF5 – data model, library, and file format for storing and managing data
– NetCDF – managing array-oriented scientific data

• Lustre file system
• 4 MPI packages
• 12 parallel libraries
• 14 performance tools
• Provisioning tools, resource management, runtime packages
• 6 threaded library packages

CS 417 © 2022 Paul Krzyzanowski 18

http://openhpc.community

HPC example: Rocks Cluster Distribution
• Employed on over 1,900 clusters (https://app.awesome-table.com/-KIAGPC-2IYjjVG2ReJn/view)

• Mass installation is a core part of the system
– Mass re-installation for application-specific configurations

• Front-end central server + compute & storage nodes

• Based on CentOS Linux

• Rolls: collection of packages
– Base roll includes: PBS (portable batch system), PVM (parallel virtual machine), MPI (message

passing interface), job launchers, …

21CS 417 © 2022 Paul Krzyzanowski

Open-source Linux cluster distribution – supported by the National Science Foundation – rocksclusters.org

https://app.awesome-table.com/-KIAGPC-2IYjjVG2ReJn/view

Batch Processing

24CS 417 © 2022 Paul Krzyzanowski

Batch processing
• Non-interactive processes
– Schedule, run eventually, collect output

• Examples:
– MapReduce, many supercomputing tasks

(circuit simulation, climate simulation, weather)
– Graphics rendering
• Maintain a queue of frames to be rendered
• Have a dispatcher to remotely exec process

• In many cases – minimal or no IPC needed

• Coordinator dispatches jobs

25CS 417 © 2022 Paul Krzyzanowski

Single-queue work distribution: Render Farms
Example – Pixar:
– 55,000 cores running RedHat Linux and Renderman (2018)
– Custom Linux software for articulating, animating/lighting (Marionette), scheduling (Ringmaster),

and rendering (RenderMan)

• Toy Story
– Each frame took between 45 minutes to 30 hours to render: 114,240 total frames
– 117 computers running 24 hours a day
– Toy Story 4 – 24 years later: 50-150 hours to render each frame

• Took over two years (in real time) to render Monsters University (2013)
– Sully has over 1 million hairs – each rendered distinctly & motion animated

• Average time to render a single frame
– Cars (2006): 8 hours
– Cars 2 (2011): 11.5 hours
– Disney/Pixar’s Coco – Up to 100 hours to render one frame

CS 417 © 2022 Paul Krzyzanowski 26

Batch Processing
• OpenPBS.org:
– Portable Batch System
– Developed by Veridian MRJ for NASA

• Commands
– Submit job scripts
• Submit interactive jobs
• Force a job to run

– List jobs
– Delete jobs
– Hold jobs

28CS 417 © 2022 Paul Krzyzanowski

Load Balancing

29CS 417 © 2022 Paul Krzyzanowski

Functions of a load balancer

• Load balancing

• Failover

• Planned outage management

30CS 417 © 2022 Paul Krzyzanowski

Redirection
Simplest technique

HTTP REDIRECT error code

31CS 417 © 2022 Paul Krzyzanowski

Redirection
Simplest technique

HTTP REDIRECT error code

www.mysite.com

32CS 417 © 2022 Paul Krzyzanowski

Redirection
Simplest technique

HTTP REDIRECT error code

www.mysite.com

REDIRECT
www03.mysite.com

33CS 417 © 2022 Paul Krzyzanowski

Redirection
Simplest technique

HTTP REDIRECT error code

www03.mysite.com

34CS 417 © 2022 Paul Krzyzanowski

Redirection
• Trivial to implement

• Successive requests automatically go to the same web server
– Important for sessions

• Visible to customer
– Don’t like the changing URL

• Bookmarks will usually tag a specific site

35CS 417 © 2022 Paul Krzyzanowski

Load balancing router
• As routers got smarter
– Not just simple packet forwarding
– Most support packet filtering
– Add load balancing to the mix

– This includes most IOS-based Cisco routers, Radware Alteon, F5 Big-IP

CS 417 © 2022 Paul Krzyzanowski 36

Load balancing router
• Assign one or more virtual addresses to physical address
– Incoming request gets mapped to physical address

• Special assignments can be made per port
– e.g., all FTP traffic goes to one machine

• Balancing decisions:
– Pick machine with least # TCP connections
– Factor in weights when selecting machines
– Pick machines round-robin
– Pick fastest connecting machine (SYN/ACK time)

• Persistence
– Send all requests from one user session to the same system

CS 417 © 2022 Paul Krzyzanowski 37

DNS-based load balancing
• Round-Robin DNS
– Respond to DNS requests with different addresses

… or a list of addresses instead of one address
but the order of the list is permuted with each response

• Geographic-based DNS response
– Multiple clusters distributed around the world
– Balance requests among clusters
– Favor geographic proximity
– Examples:
• BIND with GeoDNS patch
• PowerDNS with Geo backend
• Amazon Route 53

CS 417 © 2022 Paul Krzyzanowski 39

The End

40CS 417 © 2022 Paul Krzyzanowski

