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Assignment 6 (Project 2)
• This assignment has two parts

• This is an individual assignment

• Goal: use function interposition
– Replace readdir and time functions in existing programs 
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Environment
• You must do this assignment on a Linux platform

• It uses shared library preloading, which is not available on BSD, 
macOS, or Windows systems

• Your personal Linux system will probably be fine
– But you are responsible to make sure it works on the Rutgers iLab machines
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Environment
Download p2.zip (see assignment on Canvas) and unzip it

You will see
– Makefile – you can use this to build the zip file for submitting your program

– random – this is a demo of using LD_PRELOAD to replace a function

– hidefile – this is for Part 1

– unexpire – this is for Part 2
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Background
LD_PRELOAD is an environment variable that defines shared libraries that will 
be loaded & searched before any other libraries

• If a program needs to call a library function, this library will be checked first

• It's set as any shell environment variable:

export LD_PRELOAD=$PWD/mylib.so

This will:
• Load the shared library $PWD/mylib.so
– $PWD expands to the path of the current directory

• Check this library for any functions the program needs before checking other 
libraries
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Example
• We looked at this in class

• Here's a C program to print 10 random numbers

October 8, 2020

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{

int i;
srand(time(NULL));  // seed the generator with the current time
for (i=0; i < 10; i++)

printf("%d\n", rand()%100);
return 0;

}

random.c
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Example
If we compile and run it, we get:
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#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{

int i;
srand(time(NULL));  
for (i=0; i < 10; i++)

printf("%d\n", rand()%100);
return 0;

}

random.c

$ gcc -o random random.c
$ ./random
90
36
89
26
3
31
87
71
79
10
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Example

Now compile it to a shared library & preload it
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#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{

int i;
srand(time(NULL));  
for (i=0; i < 10; i++)

printf("%d\n", rand()%100);
return 0;

}

random.c

$ gcc -shared -fpic myrand.c -o myrand.so

$ export LD_PRELOAD=$PWD/myrand.so

int rand() {
return 42;

}

myrand.c

Let's create a file myrand.c that 
redefines the rand function
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-shared compiles a shared library
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Example
If we run the program again, it uses our 
function instead of the standard one

We did not have to recompile the program!
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#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{

int i;
srand(time(NULL));  
for (i=0; i < 10; i++)

printf("%d\n", rand()%100);
return 0;

}

random.c

$ ./random
42
42
42
42
42
42
42
42
42
42

int rand() {
return 42;

}

myrand.c
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Part 1: Goal
• Attackers sometimes try to hide their files on a system
– The best way is by modifying the kernel but we usually do not have the ability to modify 

the kernel

• Instead, we will modify the readdir library function
– This is used by most tools that need to read directory contents on Linux
– Example: ls, find, zsh, sh

• We will create a new version of readdir that checks for a file name stored in 
the environment variable HIDDEN
– If the file is in the directory, it will not be made visible to the program that's looking at files 

in the directory
– If you know it exists, you can still run it or open it by specifying its path
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Example
Preload our library, which replaces the readdir function
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$ ls -l
total 196
-rw------- 1 pxk allusers 3855 Feb 20 18:02 present.pptx
-rw------- 1 pxk allusers 237 Feb 20 18:02 salaries.xlsx
-rw------- 1 pxk allusers 18198 Feb 20 18:02 secretfile
-rw------- 1 pxk allusers 3584 Feb 20 18:02 secretfile.docx
-rw------- 1 pxk allusers 24879 Feb 20 18:02 secretfile.txt
-rw------- 1 pxk allusers 805 Feb 20 18:01 status-report-1.txt
-rw------- 1 pxk allusers 13260 Feb 20 18:01 status-report-2.txt
-rw------- 1 pxk allusers 29878 Feb 20 18:02 status-report-3.txt
-rw------- 1 pxk allusers 19550 Feb 20 18:03 testfile.c

$ export LD_PRELOAD=$PWD/hidefile.so

Use the ls command to list all the files in a directory
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Example
Set the file name that we want to hide
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$ ls -l
total 163
-rw------- 1 pxk allusers 3855 Feb 20 18:02 present.pptx
-rw------- 1 pxk allusers 237 Feb 20 18:02 salaries.xlsx
-rw------- 1 pxk allusers 18198 Feb 20 18:02 secretfile
-rw------- 1 pxk allusers 3584 Feb 20 18:02 secretfile.docx
-rw------- 1 pxk allusers 805 Feb 20 18:01 status-report-1.txt
-rw------- 1 pxk allusers 13260 Feb 20 18:01 status-report-2.txt
-rw------- 1 pxk allusers 29878 Feb 20 18:02 status-report-3.txt
-rw------- 1 pxk allusers 19550 Feb 20 18:03 testfile.c

$ HIDDEN=secretfile.txt

Run the ls command again: secretfile.txt is missing!
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Example
We can run another command, like find
Secretfile.txt is still missing!

October 8, 2020

$ find .
./status-report-1.txt
./present.pptx
./testfile.c
./status-report-3.txt
./salaries.xlsx
./secretfile
./status-report-2.txt
./secretfile.docx
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Example
If we change the file name that we want to hide
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$ ls -l
total 188
-rw------- 1 pxk allusers 3855 Feb 20 18:02 present.pptx
-rw------- 1 pxk allusers 237 Feb 20 18:02 salaries.xlsx
-rw------- 1 pxk allusers 18198 Feb 20 18:02 secretfile
-rw------- 1 pxk allusers 3584 Feb 20 18:02 secretfile.docx
-rw------- 1 pxk allusers 24879 Feb 20 18:02 secretfile.txt
-rw------- 1 pxk allusers 13260 Feb 20 18:01 status-report-2.txt
-rw------- 1 pxk allusers 29878 Feb 20 18:02 status-report-3.txt
-rw------- 1 pxk allusers 19550 Feb 20 18:03 testfile.c

$ HIDDEN=status-report-1.txt

And run the ls command – status-report-1.txt is missing!
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Example
If we remove HIDDEN:
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$ ls -l
total 196
-rw------- 1 pxk allusers 3855 Feb 20 18:02 present.pptx
-rw------- 1 pxk allusers 237 Feb 20 18:02 salaries.xlsx
-rw------- 1 pxk allusers 18198 Feb 20 18:02 secretfile
-rw------- 1 pxk allusers 3584 Feb 20 18:02 secretfile.docx
-rw------- 1 pxk allusers 24879 Feb 20 18:02 secretfile.txt
-rw------- 1 pxk allusers 805 Feb 20 18:01 status-report-1.txt
-rw------- 1 pxk allusers 13260 Feb 20 18:01 status-report-2.txt
-rw------- 1 pxk allusers 29878 Feb 20 18:02 status-report-3.txt
-rw------- 1 pxk allusers 19550 Feb 20 18:03 testfile.c

$ unset HIDDEN

Then we can see all the files:
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How to do the assignment
• Write a version of readdir in hidefile.c
– Same interface as the standard readdir – look at the manual page
– Each call to returns readdir one file
– Call the REAL readdir function
– If the file is the hidden file then do not return
• Instead, call the REAL readdir function a second time to get the next file

• Run make to compile it (see assignment instructions)

• Set LD_PRELOAD=$PWD/hidefile.so and run a command like ls
– See instructions
– You can run make test

This will create some test files and set HIDDEN
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Things to know
• You still want to call the REAL readdir function inside yours
– To do this, use the ldsym function to load and access the real version of the 

function from your library
– Read the references in the assignment for instructions on how to use ldsym

• You need to read the value of the HIDDEN environment variable
– You can get this with a call to getenv
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This is a small project!
• The implementation of hidefile.c will likely be <10 statements

• As always, develop and test incrementally
– Make sure you understand and can use & run the random example
– Put printf statements so you know that your readdir is being called
– Version 0: don't test files – just print a message and call the real readdir
– Version 1: compare against a hard-coded name, such as "secret"
– Version 2: get the environment variable and compare against that
– Version 3: test – make sure it works and works if HIDDEN is not set
– Version 4: remove your printf statements
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Part 2
• You are given a Linux program called unexpire
– Pretend this is an evaluation version of a program that has an expiration time 

coded into it
– The program exits (expires) if the current date is after January 1, 2022
– It also refuses to run with any date earlier than January 1, 2021.

• GOAL:
You wish to continue using this program past this hard-coded 
expiration time and you want to defeat its check for the time
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Part 2: unexpire
• The program calls the C library function time() to get the current time
• You will create a file called newtime.c that:
– Implements a different version of the time() function that returns a date in the 

range Jan 1 2021 … Jan 1 2021 so the expiration check will pass
– However, you want the program to report the correct time after the check takes 

place
• Your time() function will pass future requests straight through to the standard library time

function

• newtime.c will be compiled into a shared library that you will preload via
export LD_PRELOAD=$PWD/newtime.so
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Example runs
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$ ./unexpire
It is now Feb 20 2022 18:40:28
You cannot run this program before Fri Jan  1 00:00:00 2021
This software expires at Sat Jan  1 00:00:00 2022

ACCESS DENIED: It is now Feb 20 2022 18:40:28. Access expired at Sat Jan  1 00:00:00 2022

If we run unexpire, it tells us that access has expired

But if we preload our time library – newtime.so – and run unexpire:

$ LD_PRELOAD=$PWD/newtime.so ./unexpire
It is now Sep 01 2021 01:00:00
You cannot run this program before Fri Jan  1 00:00:00 2021
This software expires at Sat Jan  1 00:00:00 2022

Sep 01 2021 01:00:00: access granted! 
The current time is: Feb 20 2022 18:41:46
PASSED! You reset the time successfully!

© 2022 Paul Krzyzanowski 21



What you need to do
• This is similar to Part 1
– Your library will load and call the real function … in some cases

• You need to define a suitable time
– Pick a time in the range Jan 1 2021 … Jan 1 2022
– Figure out how to encode it so time can return it
– You can compute this outside of the program
• Or you can use a combination of strptime and mktime to set the time
• strptime: converts a human-friendly time into a struct tm
• mktime: converts a struct tm into seconds count that time can return
• Do a bit of research – read the man pages – it's not hard!

• You need to keep state
– You want to return your custom time just the first time – then pass through to time
– You can keep state in a static or global variable
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What to submit
• You must do this assignment on an iLab system

• Submit a zip file that contains
– hidefile/hidefile.c your definition of readdir for Part 1
– unexpire/newtime.c your definition of time for Part 2

To prepare the zip file, you can go to the top-level directory of the 
download package and run

make zip
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The End
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