
CS 419: Computer Security

Recitation: Project 2 Discussion
February 24, 2022
Deadline: March 6, 2022

1

TA: Daniel Bittner, Xiaoxiao He
Paul Krzyzanowski

© 2022 Paul Krzyzanowski. No part of this
content, may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Assignment 6 (Project 2)
• This assignment has two parts

• This is an individual assignment

• Goal: use function interposition
– Replace readdir and time functions in existing programs

October 8, 2020 © 2022 Paul Krzyzanowski 2

Environment
• You must do this assignment on a Linux platform

• It uses shared library preloading, which is not available on BSD,
macOS, or Windows systems

• Your personal Linux system will probably be fine
– But you are responsible to make sure it works on the Rutgers iLab machines

October 8, 2020 © 2022 Paul Krzyzanowski 3

Environment
Download p2.zip (see assignment on Canvas) and unzip it

You will see
– Makefile – you can use this to build the zip file for submitting your program

– random – this is a demo of using LD_PRELOAD to replace a function

– hidefile – this is for Part 1

– unexpire – this is for Part 2

October 8, 2020 © 2022 Paul Krzyzanowski 4

Background
LD_PRELOAD is an environment variable that defines shared libraries that will
be loaded & searched before any other libraries

• If a program needs to call a library function, this library will be checked first

• It's set as any shell environment variable:

export LD_PRELOAD=$PWD/mylib.so

This will:
• Load the shared library $PWD/mylib.so
– $PWD expands to the path of the current directory

• Check this library for any functions the program needs before checking other
libraries

October 8, 2020 © 2022 Paul Krzyzanowski 5

Example
• We looked at this in class

• Here's a C program to print 10 random numbers

October 8, 2020

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{

int i;
srand(time(NULL)); // seed the generator with the current time
for (i=0; i < 10; i++)

printf("%d\n", rand()%100);
return 0;

}

random.c

© 2022 Paul Krzyzanowski 6

Example
If we compile and run it, we get:

October 8, 2020

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{

int i;
srand(time(NULL));
for (i=0; i < 10; i++)

printf("%d\n", rand()%100);
return 0;

}

random.c

$ gcc -o random random.c
$./random
90
36
89
26
3
31
87
71
79
10

© 2022 Paul Krzyzanowski 7

Example

Now compile it to a shared library & preload it

October 8, 2020

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{

int i;
srand(time(NULL));
for (i=0; i < 10; i++)

printf("%d\n", rand()%100);
return 0;

}

random.c

$ gcc -shared -fpic myrand.c -o myrand.so

$ export LD_PRELOAD=$PWD/myrand.so

int rand() {
return 42;

}

myrand.c

Let's create a file myrand.c that
redefines the rand function

© 2022 Paul Krzyzanowski 8

Notes:
-shared compiles a shared library
-fpic creates position-independent code
-o myrand.so names the library myrand.so

Example
If we run the program again, it uses our
function instead of the standard one

We did not have to recompile the program!

October 8, 2020

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{

int i;
srand(time(NULL));
for (i=0; i < 10; i++)

printf("%d\n", rand()%100);
return 0;

}

random.c

$./random
42
42
42
42
42
42
42
42
42
42

int rand() {
return 42;

}

myrand.c

© 2022 Paul Krzyzanowski 9

Part 1: Goal
• Attackers sometimes try to hide their files on a system
– The best way is by modifying the kernel but we usually do not have the ability to modify

the kernel

• Instead, we will modify the readdir library function
– This is used by most tools that need to read directory contents on Linux
– Example: ls, find, zsh, sh

• We will create a new version of readdir that checks for a file name stored in
the environment variable HIDDEN
– If the file is in the directory, it will not be made visible to the program that's looking at files

in the directory
– If you know it exists, you can still run it or open it by specifying its path

October 8, 2020 © 2022 Paul Krzyzanowski 10

Example
Preload our library, which replaces the readdir function

October 8, 2020

$ ls -l
total 196
-rw------- 1 pxk allusers 3855 Feb 20 18:02 present.pptx
-rw------- 1 pxk allusers 237 Feb 20 18:02 salaries.xlsx
-rw------- 1 pxk allusers 18198 Feb 20 18:02 secretfile
-rw------- 1 pxk allusers 3584 Feb 20 18:02 secretfile.docx
-rw------- 1 pxk allusers 24879 Feb 20 18:02 secretfile.txt
-rw------- 1 pxk allusers 805 Feb 20 18:01 status-report-1.txt
-rw------- 1 pxk allusers 13260 Feb 20 18:01 status-report-2.txt
-rw------- 1 pxk allusers 29878 Feb 20 18:02 status-report-3.txt
-rw------- 1 pxk allusers 19550 Feb 20 18:03 testfile.c

$ export LD_PRELOAD=$PWD/hidefile.so

Use the ls command to list all the files in a directory

© 2022 Paul Krzyzanowski 11

Example
Set the file name that we want to hide

October 8, 2020

$ ls -l
total 163
-rw------- 1 pxk allusers 3855 Feb 20 18:02 present.pptx
-rw------- 1 pxk allusers 237 Feb 20 18:02 salaries.xlsx
-rw------- 1 pxk allusers 18198 Feb 20 18:02 secretfile
-rw------- 1 pxk allusers 3584 Feb 20 18:02 secretfile.docx
-rw------- 1 pxk allusers 805 Feb 20 18:01 status-report-1.txt
-rw------- 1 pxk allusers 13260 Feb 20 18:01 status-report-2.txt
-rw------- 1 pxk allusers 29878 Feb 20 18:02 status-report-3.txt
-rw------- 1 pxk allusers 19550 Feb 20 18:03 testfile.c

$ HIDDEN=secretfile.txt

Run the ls command again: secretfile.txt is missing!

© 2022 Paul Krzyzanowski 12

Example
We can run another command, like find
Secretfile.txt is still missing!

October 8, 2020

$ find .
./status-report-1.txt
./present.pptx
./testfile.c
./status-report-3.txt
./salaries.xlsx
./secretfile
./status-report-2.txt
./secretfile.docx

© 2022 Paul Krzyzanowski 13

Example
If we change the file name that we want to hide

October 8, 2020

$ ls -l
total 188
-rw------- 1 pxk allusers 3855 Feb 20 18:02 present.pptx
-rw------- 1 pxk allusers 237 Feb 20 18:02 salaries.xlsx
-rw------- 1 pxk allusers 18198 Feb 20 18:02 secretfile
-rw------- 1 pxk allusers 3584 Feb 20 18:02 secretfile.docx
-rw------- 1 pxk allusers 24879 Feb 20 18:02 secretfile.txt
-rw------- 1 pxk allusers 13260 Feb 20 18:01 status-report-2.txt
-rw------- 1 pxk allusers 29878 Feb 20 18:02 status-report-3.txt
-rw------- 1 pxk allusers 19550 Feb 20 18:03 testfile.c

$ HIDDEN=status-report-1.txt

And run the ls command – status-report-1.txt is missing!

© 2022 Paul Krzyzanowski 14

Example
If we remove HIDDEN:

October 8, 2020

$ ls -l
total 196
-rw------- 1 pxk allusers 3855 Feb 20 18:02 present.pptx
-rw------- 1 pxk allusers 237 Feb 20 18:02 salaries.xlsx
-rw------- 1 pxk allusers 18198 Feb 20 18:02 secretfile
-rw------- 1 pxk allusers 3584 Feb 20 18:02 secretfile.docx
-rw------- 1 pxk allusers 24879 Feb 20 18:02 secretfile.txt
-rw------- 1 pxk allusers 805 Feb 20 18:01 status-report-1.txt
-rw------- 1 pxk allusers 13260 Feb 20 18:01 status-report-2.txt
-rw------- 1 pxk allusers 29878 Feb 20 18:02 status-report-3.txt
-rw------- 1 pxk allusers 19550 Feb 20 18:03 testfile.c

$ unset HIDDEN

Then we can see all the files:

© 2022 Paul Krzyzanowski 15

How to do the assignment
• Write a version of readdir in hidefile.c
– Same interface as the standard readdir – look at the manual page
– Each call to returns readdir one file
– Call the REAL readdir function
– If the file is the hidden file then do not return
• Instead, call the REAL readdir function a second time to get the next file

• Run make to compile it (see assignment instructions)

• Set LD_PRELOAD=$PWD/hidefile.so and run a command like ls
– See instructions
– You can run make test

This will create some test files and set HIDDEN

October 8, 2020 © 2022 Paul Krzyzanowski 16

Things to know
• You still want to call the REAL readdir function inside yours
– To do this, use the ldsym function to load and access the real version of the

function from your library
– Read the references in the assignment for instructions on how to use ldsym

• You need to read the value of the HIDDEN environment variable
– You can get this with a call to getenv

October 8, 2020 © 2022 Paul Krzyzanowski 17

This is a small project!
• The implementation of hidefile.c will likely be <10 statements

• As always, develop and test incrementally
– Make sure you understand and can use & run the random example
– Put printf statements so you know that your readdir is being called
– Version 0: don't test files – just print a message and call the real readdir
– Version 1: compare against a hard-coded name, such as "secret"
– Version 2: get the environment variable and compare against that
– Version 3: test – make sure it works and works if HIDDEN is not set
– Version 4: remove your printf statements

October 8, 2020 © 2022 Paul Krzyzanowski 18

Part 2
• You are given a Linux program called unexpire
– Pretend this is an evaluation version of a program that has an expiration time

coded into it
– The program exits (expires) if the current date is after January 1, 2022
– It also refuses to run with any date earlier than January 1, 2021.

• GOAL:
You wish to continue using this program past this hard-coded
expiration time and you want to defeat its check for the time

October 8, 2020 © 2022 Paul Krzyzanowski 19

Part 2: unexpire
• The program calls the C library function time() to get the current time
• You will create a file called newtime.c that:
– Implements a different version of the time() function that returns a date in the

range Jan 1 2021 … Jan 1 2021 so the expiration check will pass
– However, you want the program to report the correct time after the check takes

place
• Your time() function will pass future requests straight through to the standard library time

function

• newtime.c will be compiled into a shared library that you will preload via
export LD_PRELOAD=$PWD/newtime.so

October 8, 2020 © 2022 Paul Krzyzanowski 20

Example runs

October 8, 2020

$./unexpire
It is now Feb 20 2022 18:40:28
You cannot run this program before Fri Jan 1 00:00:00 2021
This software expires at Sat Jan 1 00:00:00 2022

ACCESS DENIED: It is now Feb 20 2022 18:40:28. Access expired at Sat Jan 1 00:00:00 2022

If we run unexpire, it tells us that access has expired

But if we preload our time library – newtime.so – and run unexpire:

$ LD_PRELOAD=$PWD/newtime.so ./unexpire
It is now Sep 01 2021 01:00:00
You cannot run this program before Fri Jan 1 00:00:00 2021
This software expires at Sat Jan 1 00:00:00 2022

Sep 01 2021 01:00:00: access granted!
The current time is: Feb 20 2022 18:41:46
PASSED! You reset the time successfully!

© 2022 Paul Krzyzanowski 21

What you need to do
• This is similar to Part 1
– Your library will load and call the real function … in some cases

• You need to define a suitable time
– Pick a time in the range Jan 1 2021 … Jan 1 2022
– Figure out how to encode it so time can return it
– You can compute this outside of the program
• Or you can use a combination of strptime and mktime to set the time
• strptime: converts a human-friendly time into a struct tm
• mktime: converts a struct tm into seconds count that time can return
• Do a bit of research – read the man pages – it's not hard!

• You need to keep state
– You want to return your custom time just the first time – then pass through to time
– You can keep state in a static or global variable

October 8, 2020 © 2022 Paul Krzyzanowski 22

What to submit
• You must do this assignment on an iLab system

• Submit a zip file that contains
– hidefile/hidefile.c your definition of readdir for Part 1
– unexpire/newtime.c your definition of time for Part 2

To prepare the zip file, you can go to the top-level directory of the
download package and run

make zip

October 8, 2020 © 2022 Paul Krzyzanowski 23

The End

October 8, 2020 © 2022 Paul Krzyzanowski 24

