Computer Security
04. Command Injection Attacks & Pathname Parsing

Paul Krzyzanowski
Rutgers University

Spring 2019

.

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

-

Last week, we looked at ...

Attacks

» Buffer overflows
— Stack overflow & return address override
— Off-by-one overflow & frame pointer override
— Heap overflow & data or function pointer corruption

* printf attacks
— If you have the ability to set the format string

.

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

[Last week, we looked at ...

Defenses

« Programming languages with bounds checks & strong typing
— Use "safe" functions in C/C++

— Java, C# — Python is vulnerable in some areas
+ But native methods might be vulnerable

« Data execution protection (DEP)
no-execute memory pages for stack & heap

— Attacks: return-to-libc or Return-Oriented-Programming attacks

« Address Space Layout Randomization (ASLR)

— Attacks:
» not all programs or libraries use ASLR

« Try and try again if there isn’t much entropy in the randomization

« Stack canaries

exploit.

.

+ NOP sled — create a huge block of NOPs to increase chance of jumping to exploit

— Attack: if canary is modified, the compiler causes an exception. If you can modify the
exception handler, it can point to your code: Structured Exception Handling (SEH)

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

-

Security-Sensitive Programs

» Control hijacking isn’t interesting for regular programs on your system
— You might as well run commands from the shell

* |t is interesting if the program
— Has escalated privileges (setuid), especially root
— Runs on a system you don’t have access to (most servers)

Privileged programs are more sensitive & more useful targets

.

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 4

[Injection attacks

* Injection is rated as the #1 software vulnerability in 2017 by the Open
Web Application Security Project (OWASP)

» Allows an attacker to inject code into a program or query to
— Execute commands
— Modify a database
— Change data on a website

» We looked at buffer overflows and format strings
... but there are other forms too

.

https://www.owasp.org/index.php/Top_10-2017_Top_10

J

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

5

/
@

Bad Input: SQL Injection

.

Let’s create an SQL query in our program

sprintf (buf,

"SELECT * WHERE user='%s' AND query=

uname, query);

But suppose query comes from user input and is:

foo' OR user='root

The command we create is:

SELECT * WHERE user='paul' AND query='foo'

o
S ; g

You're careful to limit your queries to a specific user

OR user='root';

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

/ What's wrong?

* We should have used snprintf to avoid buffer overflow
(but that's not the problem here)

* We didn’t validate our input
— And ended up creating a query that we did not intend to create!

.

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

[Another example: password validation

« Suppose we're validating a user’s password:

sprintf (buf,
"SELECT * from logininfo WHERE username = '$%s
uname, passwd);

« But suppose the user entered this for a password:

AND password =

The -- is a comment that blocks the

OR 1=1 -- \\ rest of the query (if there was more)

« The command we create is:

SELECT * from logininfo WHERE username = paul AND

password = OR 1=1 -- ;

1=1 is always true!

-

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

-

Opportunities for destructive operations

.

HI, THIS 15

WERE HAVING SOME
(OMPUTER TROUBLE.

\%m

YOUR SONS SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY /

St

SELECT * FROM students WHERE name

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ 7

~OH.YES UTTE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEARS STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I H(PE
< YOUVE LEARNED
t TOSANMZE YOUR
DATABASE INPUTS.

https://xkcd.com/327/

Most databases support a batched SQL statement: multiple statements
separated by a semicolon

= 'Robert';DROP TABLE Students;

February 21, 2019

CS 419 © 2019 Paul Krzyzanowski

[Protection from SQL Injection

« SQL injection attacks are incredibly common because most web
services are front ends to database systems

— Input from web forms becomes part of the command

« Type checking is difficult
— SQL contains too many words and symbols that may be legitimate in other
contexts
— Use escaping for special characters

* Replace single quotes with two single quotes

» Prepend backslashes for embedded potentially dangerous characters (newlines,
returns, nuls

— Escaping is error-prone
» Rules differ for different databases (MySQL, PostgreSQL, dashDB, SQL Server, ...

Don’t create commands with user substrings added into them

.

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 10

(Protection from SQL Injection

» Use parameterized SQL queries or stored procedures

— Keeps query consistent: parameter data never becomes part of the query
string

uname = getResourceString("username");
passwd = getResourceString("password");

db.Execute(query, uname, passwd);

.

query = "SELECT * FROM users WHERE username = @0 AND password = Q1";

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

11

-

General Rule

* If you invoke any external program, know its parsing rules

» Converting data to statements that get executed is common in some

interpreted languages
— Shell, Perl, PHP, Python

.

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

12

-

IFS

.

Shell variable IFS (Internal Field Separator) defines delimiters used in
parsing arguments

— If you can change IFS, you may change how the shell parses data
— The default is space, tab, newline

tryl.sh names
#!/bin/bash james password
while read name password; do mary 123456
echo name=\"$name\", password=\"$password\" john qwerty
done patricia letmein
robert shadow
jennifer harley

output

$./tryl.sh <names

name="james", password="password"
name="mary", password="123456"
name="john", password="qwerty"
name="patricia", password="letmein"
name="robert", password="shadow"
name="jennifer", password="harley"

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

13

p
IFS

One small change: IFS=+

tryl.sh names
#!/bin/bash james password
IFS=+ mary 123456
while read name password; do john gwerty
echo name=\"$name\", password=\"$password\" patricia letmein
done robert shadow
jennifer harley

output

$./tryl.sh <names

name="james password", password=
name="mary 123456", password=""
name="john gwerty", password=
name="patricia letmein", password=
name="robert shadow", password=""
name="jennifer harley", password=

.

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 14

" IFS

It gets tricky for output
try.sh
#!/bin/bash
IFS="+"
echo '"$@" expansion'
echo "s@"
echo '"$*" expansion'
eChO " $ %"

$./try.sh sleepy sneezy grumpy dopey doc

"$@" expansion
sleepy sneezy grumpy dopey doc
"$*" expansion
sleepy+sneezytgrumpy+dopey+doc

You really have to know what you’re dealing with!

Suppose a program wants to send mail. It might call:
FILE *fp = popen("/usr/bin/mail —s subject user",

If IFS is setto " /" then the shell will try to execute usr bin mail...
An attacker needs to plant a program named “usr’ anywhere in the search path

w")

February 21, 2019

CS 419 © 2019 Paul Krzyzanowski

15

-

system() and popen()

-

» These library functions make it easy to execute programs
— system: execute a shell command

— popen: execute a shell command and get a file descriptor to send output to
the command or read input from the command

e These both run sh —c¢ command

* Vulnerabilities include
— Altering the search path if the full path is not specified
— Changing IFS to change the definition of separators
— Using user input as part of the command

snprintf(cmd, "/usr/bin/mail -s alert %s", bsize, user);
f = popen(cmd, "w");

What if user = "paul;rm -fr /home/*"

sh -c "/usr/bin/mail -s alert paul; rm —fr /home/*"

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 16

p
Other environment variables

« PATH: search path for commands
— If untrusted directories are in the search path before trusted ones (/bin,
/usr/bin), you might execute a command there.

» Users sometimes place the current directory (.) at the start of their search path

* What if the command is a booby-trap?
— If shell scripts use commands, they’re vulnerable to the user’s path settings

— Use absolute paths in commands or set PATH explicitly in a script

« ENV, BASH ENV
— Set to a file name that some shells execute when a shell starts

.

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 17

Other environment variables

LD_LIBRARY_PATH

— Search path for shared libraries

— If you change this, you can replace parts of the C library by custom versions
» Redefine system calls, printf, whatever...

LD_PRELOAD

— Forces a list of libraries to be loaded for a program, even if the program does
not ask for them

— If we preload our libraries, they get used instead of standard ones

You won't get root access with this but you can change the behavior of
programs
— Change random numbers, key generation, time-related functions in games
— List files or network connections that a program does
— Modify features or behavior of a program

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 18

" Example of LD PRELOAD

random.c
#include <time.h> $ gcc -o random random.c
#include <stdio.h> $./random
#include <stdlib.h> 9
int >7
main(int argc, char **argv) 13
{ 1
int 1i; 83
86
srand(time(NULL)); 45
for (i=0; i < 10; i++) 63
printf("%d\n", rand()%100); 51
return 0;
} 5

.

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

p
Let’s create a replacement for rand()

rand.c

int rand() {
return 42;

}

$ gcc -shared -fPIC rand.c -0 newrandom.so # compile
$ export LD_ PRELOAD=$PWD/newrandom.so # preload
$ /random

42

42

42
42
42 We didn’t have to recompile random!
42
42

)

42
42
42

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

20

-

Function interposition

.

interpose
(in'tar-poz’)

1. Verb (transitive)
to put someone or something in a position
between two other people or things
He swiftly interposed himself between his visitor
and the door.

2. To say something that interrupts a conversation

« Change the way library functions work without
recompiling programs

» Create wrappers for existing functions

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

21

-

File Desciptors

.

* On POSIX systems
— File descriptor 0 = standard input (stdin)
— File descriptor 1 = standard output (stdout)
— File descriptor 2 = standard error (stderr)

» open() returns the first available file descriptor

Vulnerability

— Suppose you close file descriptor 1
— Invoke a setuid root program that will open some sensitive file for output

— Anything the program prints to stdout (e.q., via printf) will write into that file,
corrupting it

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 22

4)
[p g
files.c
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
int
main(int argc, char **argv)
{
int fd = open("secretfile", O WRONLY|O CREAT, 0600);
fprintf(stderr, "fd = %d\n", fd);
printf("hello!\n");
fflush(stdout); close(fd);
return 0;
}
$./files
fd = 3
hello!
i inles &= Bash command to close a file descriptor
d = L We close the standard output
|
- J

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

23

-

Obscurity

.

Windows CreateProcess function

BOOL WINAPI CreateProcess(

_In opt
_Inout opt
_In opt
_In opt
_In opt
_In opt
_Out

LPCTSTR

LPTSTR

LPSECURITY ATTRIBUTES
LPSECURITY ATTRIBUTES
BOOL

DWORD

LPVOID

LPCTSTR
LPSTARTUPINFO

lpApplicationName,
lpCommandLine,
lpProcessAttributes,
lpThreadAttributes,
bInheritHandles,
dwCreationFlags,
lpEnvironment,
lpCurrentDirectory,
lpStartupInfo,

LPPROCESS INFORMATION lpProcessInformation);

» 10 parameters that define window creation, security attributes, file
inheritance, and others...

* It gives you a lot of control but do most programmers know what

they’re doing?

February 21, 2019

CS 419 © 2019 Paul Krzyzanowski

24

.

Pathname parsing

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

25

p
App-level access control: filenames

« If we allow users to supply filenames, we need to check them
* App admin may specify acceptable pathnames & directories

« Parsing is tricky
— Particularly if wildcards are permitted (*, ?)
— And if subdirectories are permitted

.

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

26

p
Parsing directories

« Suppose you want to restrict access outside a specified directory
— Example, ensure a web server stays within /home/httpd/html

 Attackers might want to get other files
— They'll put . . in the pathnaame
. is a link to the parent directory

For example:
http://pk.org/../../../etc/passwd

— The .. does not have to be at the start of the name — could be anywhere
http://pk.org/419/notes/../../416/../../../../etc/passwd

— But you can’t just search for . . because an embedded . . is valid
http://pk.org/419/notes/some..junk..goes..here/

— Also, extra slashes are fine
http://pk.org/419////notes///some. .junk..goes..here///

Basically, it’s easy to make mistakes!

.

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

27

! Application-Specific Syntax: Unicode

Here’s what Microsoft |IS did

« Checked URLs to make sure the request did not use . ./ to get
outside the inetpub web folder

Prevents attempts such as
http://www.pk.org/scripts/../../winnt/system32/cmd.exe

* Then it passed the URL through a decode routine to decode
extended Unicode characters

* Then it processed the web request

What went wrong?

.

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

28

! Application-Specific Syntax: Unicode

* What's the problem?
— / could be encoded as unicode $c0%af

« UTF-8
— If the first bit is a 0, we have a one-byte ASCII character

 Range 0..127
/=47 = 0x2f =0010 0111

— If the first bit is 1, we have a multi-byte character
+ If the leading bits are 110, we have a 2-byte character

— 2-byte Unicode is in the form 110a bcde 10fg hijk
» 11 bits for the character # (codepoint), range 0 .. 2047
« CO0=1100 0000, AF =1010 1111 which represents 0x2f = 47

— Technically, two-byte characters should not process # < 128
* ... but programmers are sloppy ... and we want the code to be fast

.

 If the leading bits are 1110, we have a 3-byte character, and so on...

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

29

! Application-Specific Syntax: Unicode

.

« Parsing ignored %c0%af as / because it shouldn’'t have been one
* So intruders could use IIS to access ANY file in the system

* IS ran under an IUSR account
— Anonymous account used by IIS to access the system
— IUSER is a member of Everyone and Users groups

— Has access to execute most system files,
including cmd.exe and command.com

« A malicious user had the ability to execute any commands on the
web server

— Delete files, create new network connections

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

30

4)
Parsing escaped characters

Even after Microsoft fixed the Unicode bug, another problem came up

« If you encoded the backslash (\) character
(Microsoft uses backslashes for filenames & accepts either in URLs

... and then encoded the encoded version of the \, you could bypass
the security check

\ =%5c
¢ %=2%25
« 5=19%35
* Cc=%63
For example, we can also write:

2$235c = %5¢c =\
e $25%35%63 = %5¢c =\
$255c = %5¢c =\

Yuck!

_ http://help.sap.com/SAPHELP_NWPI71/heIpdata/en/df/cS6a376a3a43ceaaa879ab726f0e08/content.htmj

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 31

These are application problems

« The OS uses whatever path the application gives it

— It traverses the directory tree and checks access rights as it goes along
» “X” (search) permissions in directories
» Read or write permissions for the file

« The application is trying to parse a pathname and map it onto a
subtree

« Many other characters also have multiple representations
— a=U+00C1 = U+0041,U+0301

Comparison rules have to be handled by applications and be
application dependent

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

32

-

More Unicode issues

.

Unicode represents virtually all the worlds glyphs

« Some symbols look the same (or similar) but have different values
Potential for deception
They're totally different to software but look the same to humans
/ = solidus (slash) = U+002F
/= fraction slash = U+2044
/ = division slash = U+2215
» = combining short solidus overlay = U+0337
/ = combining long solidus overlay = U+0338
/= fullwidth solidus = U+FFOF

Yuck!

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

33

.

Access check attacks

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

34

[Setuid file access

also access user’s files

« Example: some versions of Ipr (print spooler)
— Read users’ files and write them to the spool directory

* Let's run the program as setuid to root

if (access(file, R OK) == 0) {
fd = open(file, O RDONLY);

}

else {
perror(file);
return -1;

}

-

Some commands may need to write to restricted directories or files but

ret = read(fd, buf, sizeof buf);

But we will check file permissions first to make sure the user has read access

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

35

/
@

Problem: TOCTTOU

-

if (access(file, R OK) == 0) {

fd = open(file, O RDONLY);
ret = read(fd, buf, sizeof buf);

}

else {
perror(file);
return -1;

}

 Race condition:
TOCTTOU: Time of Check to Time of Use

« Window of time between access check & open
— Attacker can create a link to a readable file
— Run /pr in the background
— Remove the link and replace it with a link to the protected file
— The protected file will get printed

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

36

p
mktemp is also affected by this race condition

Create a temporary file to store received data

if (tmpnam r(filename)) {¢__________———————ﬂaceCondmbn!

FILE* tmp = fopen(filename, "wb+");
while((recv(sock, recvbuf, DATA SIZE, 0) > 0) && (amt != 0))
amt = fwrite(recvbuf, 1, DATA SIZE, tmp);

* API functions to create a temporary filename
— C library: tmpnam, tempnam, mktemp
— C++: _tempnam, tempnam, mktemp
— Windows API: GetTempFileName

* They create a unique name when called

— But no guarantee that an attacker doesn’t create the same name before
the filename is used

— Name often isn’t very random: high chance of attacker constructing it

From https://www.owasp.org/index.php/Insecure_Temporary_File

-

/

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 37

p
mktemp is also affected by this race condition

If an attacker creates that file first:

— Access permissions may remain unchanged for the attacker
» Attacker may access the file later and read its contents

— Legitimate code may append content, leaving attacker’s content in place
« Which may be read later as legitimate content

— Attacker may create the file as a link to an important file
« The application may end up corrupting that file

— The attacker may be smart and call open with 0 CREAT | 0 EXCL
* Or, in Windows: CreateFile with the CREATE NEW attribute
» Create a new file with exclusive access

« But if the attacker creates a file with that name, the open will fail
— Now we have denial of service attack

\ From https://www.owasp.org/index.php/Insecure_Temporary_File

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 38

[Defense against mktemp attacks

Use mkstemp

* |t will attempt to create & open a unique file

* You supply a template
A name of your choosing with XXxxXxX that will be replaced to make the
name unique
mkstemp (“/tmp/secretfileXXXXXX")

* File is opened with mode 0600: r--= —-—--= ——-

* If unable to create a file, it will fail and return -1
— You should test for failure and be prepared to work around it.

.

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

39

p
The main problem: interaction

» To increase security, a program must minimize interactions with the
outside

— Users, files, sockets
 All interactions may be attack targets

» Must be controlled, inspected, monitored

.

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

40

[Relative Attack Surface Quotient (RASQ)

» Microsoft metric of application vulnerability
— Attempts to mathematically quantify the attackability of software

* Roughly, measures # of input channels
— Some channels are easier to exploit
— Some channels are more accessible to others

 Sum of “effective attack surface values” for all “root attack vectors”

Root attack vector feature that can positively or negatively affect the security of
a product
Attack bias value representing risk of compromise for an attack

» Subjective measure: 0=no threat, 1=maximum threat

Attack surface targets for an attacker - # of things that can be attacked
Sum of attack vectors

Effective attack surface = Product of the {# of attack surfaces within a root attack
value vector} and the {attack bias}

https://www.microsoft.com/windowsserver2003/docs/AdvSec.pdf y

.

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 41

RASQ Sample root vectors & bias values

Root vector Bias
value
Open sockets 1.0
Open RPC endpoints 0.9
Enabled accounts 0.7

Enabled accounts in the 0.9
Administrator group

Weak ACLs in file system 0.2

Weak ACLs on file shares 0.9

https://WWW.microsoft.Com/windowsserver2003/docs/Adeec.pdf)

Comment

Every open & listening socket is a
potential target

Like sockets but require more skill

Default accounts simplify brute-force
password attacks

Admin accounts are higher risk

Most files in the system are targeted
after a system is compromised

Default shares are commonly known and

often targeted

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

42

-

Summary

.

» Better OSes, libraries, and strict access controls would help

— A secure OS & secure system libraries will make it easier to write security-
sensitive programs

— Enforce principle of least privilege
— Validate all user inputs ... and try to avoid using user input in commands

* Reduce chances of errors
— Eliminate unnecessary interactions (files, users, network, devices)
— Use per-process or per-user /tmp
— Avoid error-prone system calls and libraries

» Or study the detailed behavior and past exploits
* Minimize comprehension mistakes
— Specify the operating environment & all inputs
* And validate or set them at runtime: PATH, LD _LIBRARY_PATH, user input, ...
* Don’t make user input a part of executed commands

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 43

.

The end

February 21, 2019

CS 419 © 2019 Paul Krzyzanowski

44

