
Computer Security
04. Command Injection Attacks & Pathname Parsing

Paul Krzyzanowski

Rutgers University

Spring 2019

1February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

Last week, we looked at …
Attacks

• Buffer overflows
– Stack overflow & return address override
– Off-by-one overflow & frame pointer override
– Heap overflow & data or function pointer corruption

• printf attacks
– If you have the ability to set the format string

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 2

Last week, we looked at …
Defenses

• Programming languages with bounds checks & strong typing
– Use "safe" functions in C/C++
– Java, C# – Python is vulnerable in some areas

• But native methods might be vulnerable

• Data execution protection (DEP)
no-execute memory pages for stack & heap
– Attacks: return-to-libc or Return-Oriented-Programming attacks

• Address Space Layout Randomization (ASLR)
– Attacks:

• not all programs or libraries use ASLR
• NOP sled – create a huge block of NOPs to increase chance of jumping to exploit
• Try and try again if there isn’t much entropy in the randomization

• Stack canaries
– Attack: if canary is modified, the compiler causes an exception. If you can modify the

exception handler, it can point to your code: Structured Exception Handling (SEH)
exploit.

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 3

Security-Sensitive Programs
• Control hijacking isn’t interesting for regular programs on your system

– You might as well run commands from the shell

• It is interesting if the program
– Has escalated privileges (setuid), especially root
– Runs on a system you don’t have access to (most servers)

Privileged programs are more sensitive & more useful targets

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 4

Injection attacks

• Injection is rated as the #1 software vulnerability in 2017 by the Open

Web Application Security Project (OWASP)

• Allows an attacker to inject code into a program or query to

– Execute commands

– Modify a database

– Change data on a website

• We looked at buffer overflows and format strings

… but there are other forms too

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 5

https://www.owasp.org/index.php/Top_10-2017_Top_10

Bad Input: SQL Injection
• Let’s create an SQL query in our program

sprintf(buf,
"SELECT * WHERE user='%s' AND query='%s';",
uname, query);

• You’re careful to limit your queries to a specific user

• But suppose query comes from user input and is:

foo' OR user='root

• The command we create is:

SELECT * WHERE user='paul' AND query='foo' OR user='root';

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 6

What’s wrong?

• We should have used snprintf to avoid buffer overflow
(but that's not the problem here)

• We didn’t validate our input
– And ended up creating a query that we did not intend to create!

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 7

Another example: password validation
• Suppose we’re validating a user’s password:

sprintf(buf,
”SELECT * from logininfo WHERE username = '%s' AND password = '%s';",
uname, passwd);

• But suppose the user entered this for a password:

' OR 1=1 --

• The command we create is:

SELECT * from logininfo WHERE username = paul AND
password = '' OR 1=1 -- ;

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 8

The -- is a comment that blocks the
rest of the query (if there was more)

1=1 is always true!

Opportunities for destructive operations

Most databases support a batched SQL statement: multiple statements
separated by a semicolon

SELECT * FROM students WHERE name = 'Robert';DROP TABLE Students; --

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 9

https://xkcd.com/327/

Protection from SQL Injection

• SQL injection attacks are incredibly common because most web
services are front ends to database systems

– Input from web forms becomes part of the command

• Type checking is difficult

– SQL contains too many words and symbols that may be legitimate in other
contexts

– Use escaping for special characters

• Replace single quotes with two single quotes

• Prepend backslashes for embedded potentially dangerous characters (newlines,
returns, nuls

– Escaping is error-prone

• Rules differ for different databases (MySQL, PostgreSQL, dashDB, SQL Server, …

Don’t create commands with user substrings added into them

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 10

Protection from SQL Injection
• Use parameterized SQL queries or stored procedures

– Keeps query consistent: parameter data never becomes part of the query
string

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 11

uname = getResourceString("username");
passwd = getResourceString("password");
query = "SELECT * FROM users WHERE username = @0 AND password = @1";
db.Execute(query, uname, passwd);

General Rule
• If you invoke any external program, know its parsing rules

• Converting data to statements that get executed is common in some
interpreted languages
– Shell, Perl, PHP, Python

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 12

IFS

Shell variable IFS (Internal Field Separator) defines delimiters used in
parsing arguments

– If you can change IFS, you may change how the shell parses data

– The default is space, tab, newline

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 13

#!/bin/bash
while read name password; do

echo name=\"$name\", password=\"$password\"
done

james password
mary 123456
john qwerty
patricia letmein
robert shadow
jennifer harley

try1.sh names

$./try1.sh <names
name="james", password="password"
name="mary", password="123456"
name="john", password="qwerty"
name="patricia", password="letmein"
name="robert", password="shadow"
name="jennifer", password="harley"

output

IFS
One small change: IFS=+

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 14

#!/bin/bash
IFS=+
while read name password; do

echo name=\"$name\", password=\"$password\"
done

james password
mary 123456
john qwerty
patricia letmein
robert shadow
jennifer harley

try1.sh names

$./try1.sh <names
name="james password", password=""
name="mary 123456", password=""
name="john qwerty", password=""
name="patricia letmein", password=""
name="robert shadow", password=""
name="jennifer harley", password=""

output

IFS
It gets tricky for output

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 15

#!/bin/bash

IFS='+'

echo '"$@" expansion'
echo "$@"

echo '"$*" expansion'
echo "$*"

$./try.sh sleepy sneezy grumpy dopey doc
"$@" expansion
sleepy sneezy grumpy dopey doc
"$*" expansion
sleepy+sneezy+grumpy+dopey+doc

try.sh

You really have to know what you’re dealing with!

Suppose a program wants to send mail. It might call:
FILE *fp = popen("/usr/bin/mail –s subject user", "w")

If IFS is set to "/" then the shell will try to execute usr bin mail…
An attacker needs to plant a program named “usr” anywhere in the search path

system() and popen()

• These library functions make it easy to execute programs

– system: execute a shell command

– popen: execute a shell command and get a file descriptor to send output to

the command or read input from the command

• These both run sh –c command

• Vulnerabilities include

– Altering the search path if the full path is not specified

– Changing IFS to change the definition of separators

– Using user input as part of the command

snprintf(cmd, "/usr/bin/mail -s alert %s", bsize, user);
f = popen(cmd, "w");
What if user = "paul;rm -fr /home/*”
sh -c "/usr/bin/mail -s alert paul; rm –fr /home/*"

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 16

Other environment variables

• PATH: search path for commands
– If untrusted directories are in the search path before trusted ones (/bin,
/usr/bin), you might execute a command there.
• Users sometimes place the current directory (.) at the start of their search path
• What if the command is a booby-trap?

– If shell scripts use commands, they’re vulnerable to the user’s path settings
– Use absolute paths in commands or set PATH explicitly in a script

• ENV, BASH_ENV
– Set to a file name that some shells execute when a shell starts

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 17

Other environment variables

LD_LIBRARY_PATH

– Search path for shared libraries

– If you change this, you can replace parts of the C library by custom versions

• Redefine system calls, printf, whatever…

LD_PRELOAD

– Forces a list of libraries to be loaded for a program, even if the program does

not ask for them

– If we preload our libraries, they get used instead of standard ones

You won’t get root access with this but you can change the behavior of

programs

– Change random numbers, key generation, time-related functions in games

– List files or network connections that a program does

– Modify features or behavior of a program

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 18

Example of LD_PRELOAD

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 19

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{
int i;

srand(time(NULL));
for (i=0; i < 10; i++)
printf("%d\n", rand()%100);

return 0;
}

random.c

$ gcc -o random random.c
$./random
9
57
13
1
83
86
45
63
51
5

Let’s create a replacement for rand()

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 20

int rand() {
return 42;

}

rand.c

$ gcc -shared -fPIC rand.c -o newrandom.so # compile

$ export LD_PRELOAD=$PWD/newrandom.so # preload

$./random

42

42

42

42

42

42

42

42

42

42

We didn’t have to recompile random!

Function interposition

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 21

• Change the way library functions work without
recompiling programs

• Create wrappers for existing functions

interpose
(ĭn′tər-pōz′)

1. Verb (transitive)
to put someone or something in a position
between two other people or things
He swiftly interposed himself between his visitor
and the door.

2. To say something that interrupts a conversation

File Desciptors
• On POSIX systems

– File descriptor 0 = standard input (stdin)
– File descriptor 1 = standard output (stdout)
– File descriptor 2 = standard error (stderr)

• open() returns the first available file descriptor

Vulnerability
– Suppose you close file descriptor 1
– Invoke a setuid root program that will open some sensitive file for output
– Anything the program prints to stdout (e.g., via printf) will write into that file,

corrupting it

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 22

File Descriptors - example

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 23

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>

int
main(int argc, char **argv)
{
int fd = open("secretfile", O_WRONLY|O_CREAT, 0600);

fprintf(stderr, "fd = %d\n", fd);
printf("hello!\n");
fflush(stdout); close(fd);
return 0;

}

$./files
fd = 3
hello!
$./files >&-
fd = 1

files.c

Bash command to close a file descriptor
We close the standard output

Obscurity
Windows CreateProcess function

• 10 parameters that define window creation, security attributes, file
inheritance, and others…

• It gives you a lot of control but do most programmers know what
they’re doing?

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski 24

BOOL WINAPI CreateProcess(
_In_opt_ LPCTSTR lpApplicationName,
_Inout_opt_ LPTSTR lpCommandLine,
_In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,
_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
In BOOL bInheritHandles,
In DWORD dwCreationFlags,
_In_opt_ LPVOID lpEnvironment,
_In_opt_ LPCTSTR lpCurrentDirectory,
In LPSTARTUPINFO lpStartupInfo,
Out LPPROCESS_INFORMATION lpProcessInformation);

Pathname parsing

25February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

App-level access control: filenames
• If we allow users to supply filenames, we need to check them

• App admin may specify acceptable pathnames & directories

• Parsing is tricky
– Particularly if wildcards are permitted (*, ?)
– And if subdirectories are permitted

26February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

Parsing directories

• Suppose you want to restrict access outside a specified directory
– Example, ensure a web server stays within /home/httpd/html

• Attackers might want to get other files
– They’ll put .. in the pathnaame
.. is a link to the parent directory
For example:
http://pk.org/../../../etc/passwd

– The .. does not have to be at the start of the name – could be anywhere
http://pk.org/419/notes/../../416/../../../../etc/passwd

– But you can’t just search for .. because an embedded .. is valid
http://pk.org/419/notes/some..junk..goes..here/

– Also, extra slashes are fine
http://pk.org/419////notes///some..junk..goes..here///

Basically, it’s easy to make mistakes!

27February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

Application-Specific Syntax: Unicode

Here’s what Microsoft IIS did

• Checked URLs to make sure the request did not use ../ to get

outside the inetpub web folder

Prevents attempts such as

http://www.pk.org/scripts/../../winnt/system32/cmd.exe

• Then it passed the URL through a decode routine to decode

extended Unicode characters

• Then it processed the web request

28

What went wrong?

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

Application-Specific Syntax: Unicode
• What’s the problem?

– / could be encoded as unicode %c0%af

• UTF-8
– If the first bit is a 0, we have a one-byte ASCII character

• Range 0..127
/ = 47 = 0x2f = 0010 0111

– If the first bit is 1, we have a multi-byte character
• If the leading bits are 110, we have a 2-byte character
• If the leading bits are 1110, we have a 3-byte character, and so on…

– 2-byte Unicode is in the form 110a bcde 10fg hijk
• 11 bits for the character # (codepoint), range 0 .. 2047
• C0 = 1100 0000, AF = 1010 1111 which represents 0x2f = 47

– Technically, two-byte characters should not process # < 128
• … but programmers are sloppy … and we want the code to be fast

29February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

Application-Specific Syntax: Unicode

• Parsing ignored %c0%af as / because it shouldn’t have been one

• So intruders could use IIS to access ANY file in the system

• IIS ran under an IUSR account
– Anonymous account used by IIS to access the system
– IUSER is a member of Everyone and Users groups
– Has access to execute most system files,

including cmd.exe and command.com

• A malicious user had the ability to execute any commands on the
web server
– Delete files, create new network connections

30February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

Parsing escaped characters

Even after Microsoft fixed the Unicode bug, another problem came up

• If you encoded the backslash (\) character

(Microsoft uses backslashes for filenames & accepts either in URLs

… and then encoded the encoded version of the \, you could bypass

the security check

\ = %5c
• % = %25
• 5 = %35
• c = %63

For example, we can also write:

• %%35c ⇒ %5c ⇒ \
• %25%35%63 ⇒ %5c ⇒ \
• %255c ⇒ %5c ⇒ \

Yuck!

31

http://help.sap.com/SAPHELP_NWPI71/helpdata/en/df/c36a376a3a43ceaaa879ab726f0ec8/content.htm

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

These are application problems
• The OS uses whatever path the application gives it

– It traverses the directory tree and checks access rights as it goes along
• “x” (search) permissions in directories
• Read or write permissions for the file

• The application is trying to parse a pathname and map it onto a
subtree

• Many other characters also have multiple representations
– á = U+00C1 = U+0041,U+0301

Comparison rules have to be handled by applications and be
application dependent

32February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

More Unicode issues
Unicode represents virtually all the worlds glyphs

• Some symbols look the same (or similar) but have different values
Potential for deception

They’re totally different to software but look the same to humans
/ = solidus (slash) = U+002F
⁄ = fraction slash = U+2044
⁄ = division slash = U+2215
̷ = combining short solidus overlay = U+0337
̸ = combining long solidus overlay = U+0338
� = fullwidth solidus = U+FF0F

Yuck!

33February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

Access check attacks

34February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

Setuid file access
Some commands may need to write to restricted directories or files but
also access user’s files

• Example: some versions of lpr (print spooler)
– Read users’ files and write them to the spool directory

• Let’s run the program as setuid to root
But we will check file permissions first to make sure the user has read access

35

if (access(file, R_OK) == 0) {
fd = open(file, O_RDONLY);
ret = read(fd, buf, sizeof buf);
...

}
else {

perror(file);
return -1;

}

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

Problem: TOCTTOU

• Race condition:
TOCTTOU: Time of Check to Time of Use

• Window of time between access check & open
– Attacker can create a link to a readable file
– Run lpr in the background
– Remove the link and replace it with a link to the protected file
– The protected file will get printed

36

if (access(file, R_OK) == 0) {

fd = open(file, O_RDONLY);
ret = read(fd, buf, sizeof buf);
...

}
else {

perror(file);
return -1;

}

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

mktemp is also affected by this race condition

Create a temporary file to store received data

• API functions to create a temporary filename

– C library: tmpnam, tempnam, mktemp
– C++: _tempnam, _tempnam, _mktemp
– Windows API: GetTempFileName

• They create a unique name when called

– But no guarantee that an attacker doesn’t create the same name before

the filename is used

– Name often isn’t very random: high chance of attacker constructing it

37

From https://www.owasp.org/index.php/Insecure_Temporary_File

if (tmpnam_r(filename)) {
FILE* tmp = fopen(filename, "wb+");
while((recv(sock, recvbuf, DATA_SIZE, 0) > 0) && (amt != 0))
amt = fwrite(recvbuf, 1, DATA_SIZE, tmp);

}

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

race condition!

mktemp is also affected by this race condition

If an attacker creates that file first:
– Access permissions may remain unchanged for the attacker

• Attacker may access the file later and read its contents

– Legitimate code may append content, leaving attacker’s content in place
• Which may be read later as legitimate content

– Attacker may create the file as a link to an important file
• The application may end up corrupting that file

– The attacker may be smart and call open with O_CREAT | O_EXCL
• Or, in Windows: CreateFile with the CREATE_NEW attribute
• Create a new file with exclusive access
• But if the attacker creates a file with that name, the open will fail

– Now we have denial of service attack

38

From https://www.owasp.org/index.php/Insecure_Temporary_File

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

Defense against mktemp attacks
Use mkstemp

• It will attempt to create & open a unique file

• You supply a template
A name of your choosing with XXXXXX that will be replaced to make the
name unique

mkstemp(“/tmp/secretfileXXXXXX”)

• File is opened with mode 0600: r-- --- ---

• If unable to create a file, it will fail and return -1
– You should test for failure and be prepared to work around it.

39February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

The main problem: interaction
• To increase security, a program must minimize interactions with the

outside
– Users, files, sockets

• All interactions may be attack targets

• Must be controlled, inspected, monitored

40February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

Relative Attack Surface Quotient (RASQ)

• Microsoft metric of application vulnerability
– Attempts to mathematically quantify the attackability of software

• Roughly, measures # of input channels
– Some channels are easier to exploit
– Some channels are more accessible to others

• Sum of “effective attack surface values” for all “root attack vectors”

41

https://www.microsoft.com/windowsserver2003/docs/AdvSec.pdf

Root attack vector feature that can positively or negatively affect the security of
a product

Attack bias value representing risk of compromise for an attack
• Subjective measure: 0=no threat, 1=maximum threat

Attack surface targets for an attacker - # of things that can be attacked
Sum of attack vectors

Effective attack surface
value

Product of the {# of attack surfaces within a root attack
vector} and the {attack bias}

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

RASQ Sample root vectors & bias values

Root vector Bias
value

Comment

Open sockets 1.0 Every open & listening socket is a
potential target

Open RPC endpoints 0.9 Like sockets but require more skill

Enabled accounts 0.7 Default accounts simplify brute-force
password attacks

Enabled accounts in the
Administrator group

0.9 Admin accounts are higher risk

Weak ACLs in file system 0.2 Most files in the system are targeted
after a system is compromised

Weak ACLs on file shares 0.9 Default shares are commonly known and
often targeted

42

https://www.microsoft.com/windowsserver2003/docs/AdvSec.pdf

February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

Summary

• Better OSes, libraries, and strict access controls would help
– A secure OS & secure system libraries will make it easier to write security-

sensitive programs
– Enforce principle of least privilege
– Validate all user inputs … and try to avoid using user input in commands

• Reduce chances of errors
– Eliminate unnecessary interactions (files, users, network, devices)
– Use per-process or per-user /tmp
– Avoid error-prone system calls and libraries

• Or study the detailed behavior and past exploits
• Minimize comprehension mistakes

– Specify the operating environment & all inputs
• And validate or set them at runtime: PATH, LD_LIBRARY_PATH, user input, …
• Don’t make user input a part of executed commands

43February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

The end

44February 21, 2019 CS 419 © 2019 Paul Krzyzanowski

