
Computer Security
04r. Pre-exam 1 Concept Review

Paul Krzyzanowski • David Domingo • Ananya Jana

Rutgers University

Spring 2019

1February 19, 2019 CS 419 © 2019 Paul Krzyzanowski

Key ideas from the past four lectures

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 2

Computer security

• What computer security addresses:

– Confidentiality
• Allow only authorized users to access data & resources
• Privacy: limit what information will be shared with others
• Privacy is a reason for confidentiality

– Integrity: trustworthiness of data & resources
• Data integrity: data hasn’t been corrupted
• Origin integrity/destination integrity: validate who is sending and who is

receiving
• System integrity: system works properly and has not been subverted

– Availability
• The system is available for use and performs properly

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 3

No easy answers

• Security is hard
– Software is incredibly complex
– Systems are complex: cloud + local; 3rd party components; multiple

admins

• If it was easy, we wouldn’t have massive security breaches
year after year
– No magic solutions

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 4

Security goals

• Prevention: prevent attackers from violating security policy
– Implement mechanisms that users cannot override
– Example: ask for a password

• Detection: detect & report attacks
– Important when prevention fails
– Indicates & identifies weaknesses with prevention
– Also: detect attacks even if prevention is successful

• Recovery: stop the attack, repair damage
– … Or continue to function correctly even if attack succeeds
– Forensics: identify what happened so you can fix it
– Example: restoration from backups

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 5

Policies & Mechanisms

Policy: description of what is or is not allowed
� E.g., users must have a password

Mechanisms: implement and enforce policies
– E.g., password entry & authentication

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 6

Definitions

• Vulnerability
– A weakness in the implementation or operation of a system
– Bugs, bad configuration, lack of access controls

• Attack
– A means of exploiting a vulnerability
– E.g., buffer overflow, social engineering

• Threat
– An adversary that is capable of attacking

• Trusted Computing Base (TCB)
– All hardware & software of a computing system critical to its security

• Example: operating system & system software
• If the TCB is compromised, you have no assurance that any aspect of the

system is secure
February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 7

Threat categories

• Disclosure: Unauthorized access to data
– Snooping (wiretapping)

• Deception: Acceptance of false data
– Injection of data, modification of data, denial of receipt

• Disruption: Interruption or prevention of correct operation
– Modification of the system, denial of service, delays

• Usurpation: Unauthorized control of some part of a system
– Modification, spoofing an identity, escalation of privileges

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 8

Access Control

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 9

Protection & Access Control

Protection
– The mechanism that provides and enforces controlled access of

resources to processes
– A protection mechanism enforces security policies

Access control
– Ensure that authorized users can do what they are permitted to do …

and no more

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 10

The Operating System

• Protect the OS from applications

• Make sure it stays in control

• Basic OS mechanisms
– Hardware timer – periodically gives control to the OS
– Scheduler – decides which process gets to run
– Memory Management Unit (MMU) – provides private memory spaces

and memory protection (read/write/execute access)
– User & kernel mode execution – only the kernel can access privileged

instructions

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 11

Access control: subjects & objects

• Subject: the thing that needs to access resources
– Often the user

• Object: the resource the subject may access

• Access control: defines how subjects may access objects

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 12

Unix (POSIX) access control

• Each object (file, device) has
– One owner and one group
– Read, write, and/or execute permissions for the owner, group, and

other (everyone else)

• Each subject (user) has
– One user ID
– Membership in one or more groups

• For directories
– Execute permission = search permission
– Write access = you can create/delete files or directories within that

directory

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 13

POSIX file operations

• chmod: set file permissions

• chown: change file ownership of a file

• chgrp: change group ownership of a file

• Programs run with the permissions of the user who runs the
program

• setuid: permission bit that causes an executable file to run
with the ID of the file owner, not the user who is executing
the file
– WARNING! Many set UID programs run as root (administrator) and

are attractive targets. If you can take control of that program then you
get administrative privileges

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 14

Principle of least privilege

• Principle of least privilege
– At each abstraction layer, every element (user, process, function)

should be able to access only the resources necessary to perform its
task

• Privilege separation
– Divide a program into multiple parts: high & low privilege components

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 15

Access control matrix
• Table defining what a subject (user) can do to an object (file)
• Access control lists: store permissions with an object
• Capability lists: store permissions with a subject

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 16

objects

do
m

ai
ns

 o
f p

ro
te

ct
io

n
(s

ub
je

ct
s)

F0 F1 Printer

D0 read read-
write

print

D1 read-write-
execute

read

D2 read-
execute

D3 read print

D4 print

objects

F0 F1 Printer

D0 read read-
write

print

D1 read-write-
execute

read

D2 read-
execute

D3 read print

D4 print

Access control list Capability list

DAC vs. MAC

• DAC = Discretionary Access Control
– Users get to set access permissions

• MAC = Mandatory Access Control
– Administrators set access permissions that users cannot overwrite

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 17

Multi-Level Security Models
• The Bell-LaPadula model is all about confidentiality

– Simple security property:
• You cannot read data from higher clearance levels than you are

– Star *-property:
• You cannot create data that is a lower clearance level than you are

– Discretionary security property
• Users can control access with ACLs only after MAC is enforced

• The Biba model is similar but is all about integrity
– Simple integrity property:

• You cannot read an object from a lower integrity level than you are
• Example: A process will not read a system configuration file created by a lower-

integrity-level process
– Star *-property:

• You cannot write to an object of a higher integrity level than you are
• Example: A web browser may not write a system configuration file

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 18

Other MAC models

• Type Enforcement (TE) Model
– An access control matrix that gets checked first

• This is managed by an administrator
– Subjects assigned to domains; objects assigned to types
– Matrix defines domain-domain and domain-type transitions

• Role-Based Access Control (RBAC) model
– Users are assigned roles (job functions)
– Access permissions are granted to roles
– Access rights have a session: you get them to do a task
– Commonly used in database systems

• Roles: delete users, modify a user’s pay, view users, …

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 19

Multilateral Security

• In addition to levels, a level may have compartments
– You can only access resources if you have been granted access to

that compartment
– E.g., {Top Secret, Elvis}

• can access {Top Secret}, {Secret, Elvis}, {Secret}
• Cannot access {Top Secret, UFO}, {Secret, UFO}

• Lattice model
– Implements multilevel security with labels per level
– Directed graph that defines access rights among clearance levels and

compartment labels

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 20

Chinese Wall Model

• Defines conflict classes: groups of competing companies
– Designed for businesses where employees have to avoid conflict of

interest

• Basic rule
– A subject can access objects from a company as long as it never

accessed objects from competing companies.

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 21

Program Hijacking

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 22

Stack-based buffer overflow

• Buffer limits not checked
– Often because unsafe functions like strcpy, strcat, and sprintf are used

• Overflow overwrites frame pointer & stack pointer

• If the stack pointer is changed, the return address is
changed
– Write code into the buffer
– Overflow the buffer to set the return address
– When the function returns, it branches to the new code

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 23

Off-by-one Buffer Overflows

An off-by-one stack overflow can only modify one byte of the
top of the stack, which holds the frame pointer

– When a function returns, the modified frame pointer becomes the
reference point for all local variables

– It also becomes the new stack pointer when a new function is called
– (see homework assignment)

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 24

Heap & text segment overflows

• A buffer overflow can overwrite adjacent variables that are
allocated in higher memory
– The program will use these modified variables

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 25

Printf format attacks

If an attacker can change the printf format string

• Read the stack
– Read any address on the stack (using %x, for example)
– If you don’t supply arguments, printf will match %x with the next item

on the stack

• Modify memory
– Use ”%x” to set where we write in memory: each %x skips one word

on the stack
– Use “%.Nx” to generate N bytes of output – this allows you to set the

value you will write
– Use %n to write the value – it prints the # of bytes output so far

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 26

Defenses

• Data Execute Protection (DEP)
– Operating system turns off execute permission for stack and heap

memory
– Attacks:

• return-to-libc: overflow a return address to a desired point in the C library
• Return-Oriented-Programming (ROP): overflow a stack of return addresses

to various points in libraries or the program – the return from one function
takes you to the next entry point

• Address Space Layout Randomization (ASLR)
– Load programs and libraries into different memory locations so

addresses are different each time

• Stack Canaries
– Compiler places a random # on the top of the stack and checks it

before returning from a function

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 27

SQL Injection Attacks
• If user input becomes part of a SQL query, it can change the type of

query – or add additional commands

SELECT * from logininfo WHERE username = paul AND password = 'abcde'

SELECT * from logininfo WHERE username = paul AND password = '' OR
1=1 -- ;'

– Validate all input!
– Safest prevention = use parameterized queries – don’t make user input part of

the command

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 28

Shell injection attacks
• Use of system() and popen() in programs

– These invoke the shell. Same risk as SQL injection if user input is part of the
command

• PATH variable: change the order in which the shell looks for programs

• LD_PRELOAD: preload libraries, possibly overriding functions that the
program uses with your own

• LD_LIBRARY_PATH: similar attack – tell the OS where to look for
libraries

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 29

App-level name parsing
• Parsing pathnames to make sure a user-supplied name stays within a

subdirectory can be trickly
– http://poopybrain.com/../../../etc/passwd

• Escaped Unicode characters make it harder
– Single-byte characters have multi-byte equivalents: ”/” = 0x2f = 0xc0af

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 30

TOCTTOU Attack

• Time Of Check To Time Of Use
– If you check the condition and then do something, you may introduce a race

condition
– An attacker may change something after you check the condition but before

you do the operation
• Example: change a link to a user-readable file to a privileged file

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 31

App confinement
• chroot: change root directory for a process & its children

– If an attacker becomes root, he may be able to escape by creating a device
file that gives access to the disk or to memory

• FreeBSD Jails
– Same namespace protection like chroot
– But you can take power away from root for processes in the jail

• No ability to create devices, raw sockets, mounting filesystems
– Way more secure

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 32

App confinement
• Linux namespaces

– Provide a private namespace for directory structure, network, process ID,
user/group IDs, IPC, hostname

• Linux capabilities
– Selectively take away power if a process becomes root.
– Disallow file owner changes, permission changes, sending signals, creating

raw sockets, changing root, etc.

• Linux control groups
– Limit how much resources a process can use (CPU, memory, files, network)

February 19, 2019 CS 419 © 2019 Paul Krzyzanowski 33

The end

34February 19, 2019 CS 419 © 2019 Paul Krzyzanowski

