Computer Security
05. Confinement — Application Sandboxes

Paul Krzyzanowski
Rutgers University

Spring 2019

.

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

The sandbox

sand<box, ’san(d)-"biks, noun. Date: 1688
: a box or receptacle containing loose sand: as
a: a shaker for sprinkling sand on wet ink b: a
box that contains sand for children to play in

A restricted area where code can play in

Allow users to download and execute untrusted applications with limited risk

Restrictions can be placed on what an application is allowed to do in its sandbox

Untrusted applications can execute in a trusted environment

Jails & containers are a form of sandboxing
... but we want to focus on giving users the ability to run apps

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski 6

Application sandboxing

via system call hooking &
user-level validation

.

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

[System Call Interposition

System calls interface with system resources

« An application must use system calls to access any resources, initiate
attacks ... and cause any damage

— Modify/access files/devices:
creatl, open, read, write, unlink, chown, chgrp, chmod, ...

— Access the network:
socket, bind, connect, send, recv

« System call interposition (hooking)
— Intercept, inspect, and approve an app’s system calls

.

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski 8

p
Example: Janus

» Policy file defines allowable files and network operations

» Dedicated policy per process
— Policy engine reads policy file
— Forks
— Child process execs application
— All accesses to resources are screened by Janus

» OS system call entry point contains a hooks
— Redirects control to mod Janus
— Module tells the user-level Janus process that a system call has been

requested

* Process is blocked
» Janus process queries the module for details about the call

» Makes a policy decision

.

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

-

Example: Janus

.

App sandboxing tool implemented as a loadable kernel module

Application Environment ! Janus

: | Poli
Process : : olicy
: : Engine
4 i i A

— >
__ Sl e _.
X [
S (= User space
_ £ 3 Kernel space
open(“file.txt”) result S o
’ open(“file.txt”)} _____ 8_'_ _______] f _____
System call entry p " _
Deny : mod_janus i
result . 4

Allow
open(“file.txt”)

Kernel

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski 10

[Implementation Challenge

Janus has to mirror the state of the operating system!

 If process forks, the Janus monitor must fork

» Keep track of the network protocol
— socket, bind, connect, read/write, shutdown

* Does not know if certain operations failed
» Gets tricky if file descriptors are duplicated

« Remember filename parsing?
— We have to figure out the whole dot-dot (..) thing!
— Have to keep track of changes to the current directory too

» App namespace can change if the process does a chroot

« What if file descriptors are passed via Unix domain sockets?
— sendmsg, recvmsg

* Race conditions: TOCTTOU

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

.

Application sandboxing

via integrated OS support

March 21, 2019 CS 419 © 2019 Paul Krzyzanowski

12

-

Linux seccomp-BPF

.

* Linux capabilities
— Dealt with things a root user could do
— No ability to restrict access to regular files

» Linux namespaces
— Chroot functionality — no ability to be selective about files

Seccomp-BPF =
SECure COMPuting with Berkeley Packet Filters

» Allows the user to attach a system call filter to a process and all its
descendants

— Enumerate allowable system calls
— Allow/disallow access to specific files & network protocols

« Used extensively in Android

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

13

! Linux seccomp-BPF)

» Uses the Berkeley Packet Filter (BPF) interpreter
— seccomp sends “packets” that represent system calls to BPF

« BPF allows us to define rules to inspect each request and take an action
— Kill the task
— Disallow & send SIGSYS
— Return an error
— Allow

e Turned on via the prctl() — process control — system call

Seccomp is not a complete sandbox but is a tool for building sandboxes

— Needs to work with other components
« Namespaces, capabilities, control groups
— Potential for comprehension problems — BPF is very low level

- J

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski 14

! Apple Sandbox

» Create a list of rules that is consulted to see if an operation is permitted

« Components:
— Set of libraries for initializing/configuring policies per process
— Server for kernel logging
— Kernel extension using the TrustedBSD API for enforcing individual policies

— Kernel support extension providing regular expression matching for policy
enforcement

» sandbox-exec command & sandbox_init function

— sandbox-exec: calls sandbox init() before fork() and exec()
— sandbox init(kSBXProfileNoWrite, SANDBOX NAMED, errbuf);

.

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski 15

-

Apple sandbox setup & operation

sandbox_init:
— Convert human-readable policies into a binary format for the kernel
— Policies passed to the kernel to the TrustedBSD subsystem

— TrustedBSD subsystem passes rules to the kernel extension
— Kernel extension installs sandbox profile rules for the current process

Operation: intercept system calls

— System calls hooked by the TrustedBSD layer will pass through
Sandbox.kext for policy enforcement

— The extension will consult the list of rules for the current process
— Some rules require pattern matching (e.g., filename pattern)

.

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski 16

-

Apple sandbox policies

.

Some pre-written profiles:
— Prohibit TCP/IP networking
— Pronhibit all networking
— Prohibit file system writes
— Restrict writes to specific locations (e.g., /var/tmp)

— Perform only computation: minimal OS services

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

17

.

Browser-based application sandboxing

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

18

.

/
@

Web plug-ins

« External binaries that add capabilities to a browser
» Loaded when content for them is embedded in a page

« Examples: Adobe Flash, Adobe Reader, Java

Challenge:
How do you keep plugins from doing bad things?

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

19

4)

Chromium Native Client (NaCl) @ chrome

» Browser plug-in designed for
— Safe execution of platform-independent untrusted native code in a browser
— Compute-intensive applications
— Interactive applications that use resources of a client

* Two types of code: trusted & untrusted
— Trusted code does not run in a sandbox
— Untrusted code has to run in a sandbox

» Untrusted native code
— Built using NaCl SDK or any compiler that follows alignment rules and
instruction restrictions
» GNU-based toolchain, custom versions of gcc/binutils/gdb, libraries
» Support for ARM 32-bit, x86-32, x86-64, MIPS32
» Pepper Plugin API (PPAPI): portability for 2D/3D graphics & audio
— NaCl statically verifies the code to check for use of privileged instructions

- J

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski 20

i Chromium Native Client (NaCl)

Two sandboxes
— Outer sandbox: restricts capabilities using system call interposition

— Inner sandbox: uses x86 segmentation to isolate memory among apps
« Uses static analysis to detect security defects in code; disallow self-modifying code

e) e ™
[Untrusted]
program
Browser <:>
IPC NaCl sandbox syscall
[NaCl runtime]
_ Y, _ J

I Native syscall I Chrome sandbox syscall

[Operating System }

\

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski 21

" Portability

» Portable Native Client (PNaCl)

— Architecture independent
— Developers compile code once to run on any website & architecture

— Compiled to a portable executable (pexe) file
— Chrome translates pexe into native code prior to exectution

.

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

22

.

Java sandbox

March 20, 2019

CS 419 © 2019 Paul Krzyzanowski

23

[Java Language

« Type-safe & easy to use
— Memory management and range checking

« Designed for an interpreted environment: JVM

* No direct access to system calls

.

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

-

Java Sandbox

.

1. Bytecode verifier: verifies Java bytecode before it is run
« Disallow pointer arithmetic
« Automatic garbage collection
* Array bounds checking
* Null reference checking

2. Class loader: determines if an object is allowed to add classes
« Ensures key parts of the runtime environment are not overwritten
» Runtime data areas (stacks, bytecodes, heap) are randomly laid out

3. Security manager: enforces protection domain
» Defines the boundaries of the sandbox (file, net, native, etc. access)
« Consulted before any access to a resource is allowed

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski

25

[JVM Security

« Complex process
« 20+ years of bugs ... hope the big ones have been found!

 Buffer overflows found in the C support library
— C support library buggy in general

* Generally, the JVM is considered insecure

— But Java in general is pretty secure
* Array bounds checking, memory management
« Security manager with access controls

— Use of native methods allows you to bypass security checks

\

March 20, 2019 CS 419 © 2019 Paul Krzyzanowski 26

.

The end

March 20, 2019

CS 419 © 2019 Paul Krzyzanowski

27

