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Last Time

• chroot

• FreeBSD Jails

• Linux namespaces, capabilities, and control groups
– Control groups

• Allow processes to be grouped together – control resources for the group
– Capabilities

• Limit what root can do for a process & its children
– Namespaces

• Restrict what a process can see & who it can interact with:
PIDs, User IDs, mount points, IPC, network
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Containers
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What's the main problem?

• Installing software packages can be a pain
– Dependencies

• Running multiple packages on one system can be a pain
– Updating a package can update a library or utility another uses

• Causing something else to break
– No isolation among packages

• Something goes awry in one service impacts another

• Migrating services to another system is a pain
– Re-deploy & reconfigure
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How did we address these problems?

• Sysadmin effort
– Service downtime, frustration, redeployment

• Run every service on a separate system
– Mail server, database, web server, app server, …
– Expensive!  … and overkill

• Deploy virtual machines
– Kind of like running services on separate systems
– Each service gets its own instance of the OS and all supporting 

software
– Heavyweight approach

• Time share between operating systems
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What are containers?

Containers: created to package & distribute software
– Focus on services, not end-user apps
– Software systems usually require a bunch of stuff:

• Libraries, multiple applications, configuration tools, …
– Container = image containing the application environment

• Can be installed and run on any system

Key insight:
Encapsulate software, configuration, & dependencies into 
one package
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A container feels like a VM

• Separate
– Process space, network interface, network configuration, libraries, …
– Limited root powers

• But:
– All containers on a system share the same OS & kernel modules
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How are containers built?

• Control groups
– Meters & limits on resource use

• Memory, disk (I/O bandwidth), CPU (set %), network (traffic priority)

• Namespaces
– Isolates what processes can see & access
– Process IDs, host name, mounted file systems, users, IPC
– Network interface, routing tables, sockets

• Capabilities
– Keep root access but restrict what it can do

• Copy on write file system
– Instantly create new containers without copying the entire package
– Storage system tracks changes

• AppArmor
– Pathname-based mandatory access controls
– Confines programs to a set of listed files & capabilities
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Initially … Docker
• First super-popular container

• Designed to provide Platform-as-a-Service capabilities
– Combined Linux cgroups & namespaces into a single easy-to-use 

package
– Enabled applications to be deployed consistently anywhere as one 

package

• Docker Image
– Package containing applications & supporting libraries & files
– Can be deployed on many environments

• Make deployment easy
– Git-like commands: docker push, docker commit, ...
– Make it easy to reuse image and track changes
– Download updates instead of entire images

• Keep Docker images immutable (read-only)
– Run containers by creating a writable layer to temporarily store runtime 

changes
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Later Docker additions

• Docker Hub: cloud based repository for docker images

• Docker Swarm: deploy multiple containers as one 
abstraction
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Container Orchestration

• We wanted to manage containers across systems

• Multiple efforts
– Marathon/Apache Mesos (2014), Kubernetes (2015), Nomad, Docker 

Swarm, …

• Google designed Kubernetes for container orchestration
– Google invented Linux control groups
– Standard deployment interface
– Scale rapidly (e.g., Pokemon Go) 
– Open source (unlike Docker Swarm)
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Container orchestration

• Kubernetes orchestration
– Handle multiple containers and start each one at the right time
– Handle storage
– Deal with hardware and container failure
– Add remove containers in response to demand
– Integrates with the Docker engine, which runs the actual container
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Containers & Security

Primary goal was software distribution, not security

– Makes moving & running a collection of software simple
• E.g., Docker Container Format

– Everything at Google is deployed & runs in a container
• Over 2 billion containers started per week (2014)
• lmctfy (“Let Me Contain That For You”)

– Google’s old container tool – similar to Docker and LXC (Linux Containers)
• Then Kubernetes to manage multiple containers & their storage

March 21, 2018 CS 419 © 2018 Paul Krzyzanowski 13

Containers & Security
• But there are security benefits

– Containers use namespaces, control groups, & capabilities
• Restricted capabilities by default
• Isolation among containers

– Containers are usually minimal and application-specific
• Just a few processes
• Minimal software & libraries
• Fewer things to attack

– They separate policy from enforcement
– Execution environments are reproducible

• Easy to inspect how a container is defined
• Can be tested in multiple environments

– Watchdog-based restarting: helps with availability
– Containers help with comprehension errors

• Decent default security without learning much
• Also ability to enable other security modules
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Security Concerns
• Kernel exploits

– All containers share the same kernel

• Denial of service attacks
– If one container can monopolize a resource, others suffer

• Privilege escalation
– Shouldn't happen with capabilities ... But there might be bugs

• Origin integrity
– Where is the container from and has it been tampered?
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Sandboxes
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The sandbox

• A restricted area where code can play in

• Allow users to download and execute untrusted applications with limited 
risk

• Restrictions can be placed on what an application is allowed to do in its 
sandbox

• Untrusted applications can execute in a trusted environment

Jails & containers are a form of sandboxing
… but we want to focus on giving users the ability to run apps

sand•box, ’san(d)-"bäks, noun. Date: 1688
: a box or receptacle containing loose sand: as 
a: a shaker for sprinkling sand on wet ink b: a 
box that contains sand for children to play in

17March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

System Call Interposition
• System calls interface with resources

– An application must use system calls to access any resources, initiate attacks 
… and cause any damage
• Modify/access files/devices: creat, open, read, write, unlink, chown, chgrp, chmod, …
• Access the network: socket, bind, connect, send, recv

• Interposition
– Intercept & inspect an app’s system calls
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Example: Janus
App sandboxing tool implemented as a loadable kernel module
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Example: Janus
• Policy file defines allowable files and network operations

• Dedicated policy per process
– Policy engine reads policy file
– Forks
– Child process execs application
– All accesses to resources are screened by Janus

• System call entry points contain hooks
– Redirect control to mod_Janus
– Module tells the user-level Janus process that a system call has been 

requested
• Process is blocked
• Janus process queries the module for details about the call
• Makes a policy decision
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Implementation Challenge

Janus has to mirror the state of the operating system!

• If process forks, the Janus monitor must fork

• Keep track of the network protocol

– socket, bind, connect, read/write, shutdown

• Does not know if certain operations failed

• Gets tricky if file descriptors are duplicated

• Remember filename parsing?

– We have to figure out the whole dot-dot (..) thing!

– Have to keep track of changes to the current directory too

• App namespace can change if the process does a chroot

• What if file descriptors are passed via Unix domain sockets?

– sendmsg, recvmsg

• Race conditions: TOCTTOU
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Web plug-ins

• External binaries that add capabilities to a browser

• Loaded when content for them is embedded in a page

• Examples: Adobe Flash, Adobe Reader, Java
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Chromium Native Client (NaCl)
• Designed for

– Safe execution of platform-independent untrusted native code in a browser
– Compute-intensive applications
– Interactive applications that use resources of a client

• Two types of code: trusted & untrusted
– Untrusted has to run in a sandbox
– Pepper Plugin API (PPAPI): portability for 2D/3D graphics & audio

• Untrusted native code 
– Built using NaCl SDK or any compiler that follows alignment rules and 

instruction restrictions
• GNU-based toolchain, custom versions of gcc/binutils/gdb, libraries
• 32-bit x86 support

– NaCl statically verifies the code to check for use of privileged instructions
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Chromium Native Client (NaCl)

Two sandboxes
– Outer sandbox: restricts capabilities using system call interposition
– Inner sandbox: uses x86 segmentation to isolate memory among apps
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Java Language

• Type-safe & easy to use
– Memory management and range checking

• Designed for an interpreted environment: JVM

• No direct access to system calls
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Java Sandbox
1. Bytecode verifier: verifies Java bytecode before it is run

• Disallow pointer arithmetic
• Automatic garbage collection
• Array bounds checking
• Null reference checking

2. Class loader: determines if an object is allowed to add classes
• Ensures key parts of the runtime environment are not overwritten
• Runtime data areas (stacks, bytecodes, heap) are randomly laid out

3. Security manager: enforces protection domain
• Defines the boundaries of the sandbox (file, net, native, etc. access)
• Consulted before any access to a resource is allowed
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JVM Security

• Complex process

• ~20 years of bugs … hope the big ones have been found!

• Buffer overflows found in the C support library
– C support library buggy in general

• Generally, the JVM is considered insecure
– But Java in general is pretty secure

• Array bounds checking, memory management
• Security manager with access controls

– Use of native methods allows you to bypass security checks
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OS-Level Sandboxes

Example: the Apple Sandbox

• Create a list of rules that is consulted to see if an operation is permitted

• Components:

– Set of libraries for initializing/configuring policies per process

– Server for kernel logging

– Kernel extension using the TrustedBSD API for enforcing individual policies

– Kernel support extension providing regular expression matching for policy 

enforcement

• sandbox-exec command & sandbox_init function

– sandbox-exec: calls sandbox_init() before fork() and exec()
– sandbox_init(kSBXProfileNoWrite, SANDBOX_NAMED, errbuf);
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Apple sandbox setup & operation

sandbox_init:
– Convert human-readable policies into a binary format for the kernel

– Policies passed to the kernel to the TrustedBSD subsystem

– TrustedBSD subsystem passes rules to the kernel extension

– Kernel extension installs sandbox profile rules for the current process

Operation: intercept system calls

– System calls hooked by the TrustedBSD layer will pass through 

Sandbox.kext for policy enforcement

– The extension will consult the list of rules for the current process

– Some rules require pattern matching (e.g., filename pattern)
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Apple sandbox policies

Some pre-written profiles:
– Prohibit TCP/IP networking

– Prohibit all networking

– Prohibit file system writes
– Restrict writes to specific locations (e.g., /var/tmp)

– Perform only computation: minimal OS services
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Virtual Machines
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Virtual CPUs (sort of)
What time-sharing operating systems give us

• Each process feels like it has its own CPU & memory
– But cannot execute privileged CPU instructions

(e.g., modify the MMU or the interval timer, halt the processor, access I/O)

• Illusion created by OS preemption, scheduler, and MMU

• User software has to “ask the OS” to do system-related functions

• Containers, BSD Jails, namespaces give us operating system-level 
virtualization
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Process Virtual Machines

CPU interpreter running as a process

• Pseudo-machine with interpreted instructions
– 1966: O-code for BCPL
– 1973: P-code for Pascal
– 1995: Java Virtual Machine (JIT compilation added)
– 2002: Microsoft .NET CLR (pre-compilation)
– 2003: QEMU (dynamic binary translation)
– 2008: Dalvik VM for Android
– 2014: Android Runtime (ART) – ahead of time compilation

• Advantage: run anywhere, sandboxing capability

• No ability to even pretend to access the system hardware
– Just function calls to access system functions
– Or “generic” hardware
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Machine Virtualization
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Machine Virtualization
Normally all hardware and I/O managed by one operating system

Machine virtualization
– Abstract (virtualize) control of hardware and I/O from the OS
– Partition a physical computer to act like several real machines

• Manipulate memory mappings
• Set system timers
• Access devices

– Migrate an entire OS & its applications from one machine to another

1972: IBM System 370
– Allow kernel developers to share a computer

35March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Why are VMs popular?

• Wasteful to dedicate a computer to each service
– Mail, print server, web server, file server, database

• If these services run on a separate computer
– Configure the OS just for that service
– Attacks and privilege escalation won’t hurt other services
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Hypervisor

• Hypervisor: Program in charge of virtualization
– Aka Virtual Machine Monitor
– Provides the illusion that the OS has full access to the hardware
– Arbitrates access to physical resources
– Presents a set of virtual device interfaces to each host
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Machine Virtualization
An OS is just a bunch of code!

• Privileged vs. unprivileged instructions

• If regular applications execute privileged instructions, they trap

• Operating systems are allowed to execute privileged instructions

• If running kernel code, the VMM catches the trap and emulates the 
instruction
– Trap & Emulate
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Hypervisor

Application or Guest OS runs until:
– Privileged instruction traps
– System interrupts
– Exceptions (page faults)
– Explicit call: VMCALL (Intel) or VMMCALL (AMD)
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Intel & ARM Didn’t Make VM Easy

• Intel/AMD systems prior to Core 2 Duo (2006) did not support trapping 
privileged instructions

• Most ARM architectures also did not trap on certain privileged 
instructions
– Hardware support added in Cortex-A15 (ARMv7 Virtualization Extension): 2011

• Two approaches

– Binary translation (BT)
• Scan instruction stream on the fly (when page is loaded) and replace privileged 

instructions with instructions that work with the virtual hardware (VMware approach)

– Paravirtualization

• Don’t use non-virtualizable instructions (Xen approach)

• Invoke hypervisor calls explicitly
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Hardware support for virtualization

Root mode (Intel example)
– Layer of execution more privileged than the kernel

apps

Guest OS

VMM

hardware
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Architectural Support

• Intel Virtual Technology

• AMD Opteron

Guest mode execution: can run privileged instructions directly
– E.g., a system call does not need to go to the VM

– Certain privileged instructions are intercepted as VM exits to the VMM

– Exceptions, faults, and external interrupts are intercepted as VM exits

– Virtualized exceptions/faults are injected as VM entries
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CPU Architectural Support
• Setup

– Turn VM support on/off
– Configure what controls VM exits
– Processor state

• Saved & restored in guest & host areas

• VM Entry: go from hypervisor to VM
– Load state from guest area

• VM Exit
– VM-exit information contains cause of exit
– Processor state saved in guest area
– Processor state loaded from host area
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Two Approaches to Running VMs

1. Native VM (hypervisor model)

2. Hosted VM
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Native Virtual Machine

Native VM (or Type 1 or Bare Metal)
– No primary OS
– Hypervisor is in charge of access to the devices and scheduling
– OS runs in “kernel mode” but does not run with full privileges

Applications

OS

Virtual Machine

Virtual Machine Monitor (Hypervisor)

Applications

OS

Virtual Machine

Applications

OS

Virtual Machine

Physical Machine
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Example: 
VMware ESX

Device driver
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Hosted Virtual Machine
Hosted VM

– VMM runs without special privileges
– Primary OS responsible for access to the raw machine

• Lets you use all the drivers available for that primary OS
– Guest operating systems run under a VMM
– VMM invoked by host OS

• Serves as a proxy to the host OS for access to devices

Applications

Host OS VM Driver

Applications

Guest OS

VMM

Physical Machine
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Example: 
VMware 

Workstation

Device driver

Device emulation
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Security Assumptions

• Attacks & malware can target the guest OS & apps

• Malware cannot escape from the infected VM
– Cannot infect the host OS
– Cannot infect the VMM
– Cannot infect other VMs on the same computer
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Covert Channels
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Classified VM Public VM

Classified 
Data Malware Malware 

Listener

VMM

1. Malware can perform CPU-intensive task at specific times
2. Listener can do CPU-intensive tasks and measure completion times
This allows malware to send a bit pattern:

malware working = 1 = slowdown on listener 
Depends on scheduler but there are other mechanisms too… like memory access
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Covert channel
– Secret communication channel 

between components that are not 
allowed to communicate

Side channel attack
– Communication using some aspect 

of a system's behavior
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The end
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