
CS 419 3/22/18

© 2017 Paul Krzyzanowski 1

Computer Security
05. Confinement

Paul Krzyzanowski

Rutgers University

Spring 2018

1March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Last Time

• chroot

• FreeBSD Jails

• Linux namespaces, capabilities, and control groups
– Control groups

• Allow processes to be grouped together – control resources for the group
– Capabilities

• Limit what root can do for a process & its children
– Namespaces

• Restrict what a process can see & who it can interact with:
PIDs, User IDs, mount points, IPC, network

March 21, 2018 CS 419 © 2018 Paul Krzyzanowski 2

Containers

March 21, 2018 CS 419 © 2018 Paul Krzyzanowski 3

What's the main problem?

• Installing software packages can be a pain
– Dependencies

• Running multiple packages on one system can be a pain
– Updating a package can update a library or utility another uses

• Causing something else to break
– No isolation among packages

• Something goes awry in one service impacts another

• Migrating services to another system is a pain
– Re-deploy & reconfigure

4March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

How did we address these problems?

• Sysadmin effort
– Service downtime, frustration, redeployment

• Run every service on a separate system
– Mail server, database, web server, app server, …
– Expensive! … and overkill

• Deploy virtual machines
– Kind of like running services on separate systems
– Each service gets its own instance of the OS and all supporting

software
– Heavyweight approach

• Time share between operating systems

5March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

What are containers?

Containers: created to package & distribute software
– Focus on services, not end-user apps
– Software systems usually require a bunch of stuff:

• Libraries, multiple applications, configuration tools, …
– Container = image containing the application environment

• Can be installed and run on any system

Key insight:
Encapsulate software, configuration, & dependencies into
one package

6March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

CS 419 3/22/18

© 2017 Paul Krzyzanowski 2

A container feels like a VM

• Separate
– Process space, network interface, network configuration, libraries, …
– Limited root powers

• But:
– All containers on a system share the same OS & kernel modules

7March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

How are containers built?

• Control groups
– Meters & limits on resource use

• Memory, disk (I/O bandwidth), CPU (set %), network (traffic priority)

• Namespaces
– Isolates what processes can see & access
– Process IDs, host name, mounted file systems, users, IPC
– Network interface, routing tables, sockets

• Capabilities
– Keep root access but restrict what it can do

• Copy on write file system
– Instantly create new containers without copying the entire package
– Storage system tracks changes

• AppArmor
– Pathname-based mandatory access controls
– Confines programs to a set of listed files & capabilities

8March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Initially … Docker
• First super-popular container

• Designed to provide Platform-as-a-Service capabilities
– Combined Linux cgroups & namespaces into a single easy-to-use

package
– Enabled applications to be deployed consistently anywhere as one

package

• Docker Image
– Package containing applications & supporting libraries & files
– Can be deployed on many environments

• Make deployment easy
– Git-like commands: docker push, docker commit, ...
– Make it easy to reuse image and track changes
– Download updates instead of entire images

• Keep Docker images immutable (read-only)
– Run containers by creating a writable layer to temporarily store runtime

changes
9March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Later Docker additions

• Docker Hub: cloud based repository for docker images

• Docker Swarm: deploy multiple containers as one
abstraction

10March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Container Orchestration

• We wanted to manage containers across systems

• Multiple efforts
– Marathon/Apache Mesos (2014), Kubernetes (2015), Nomad, Docker

Swarm, …

• Google designed Kubernetes for container orchestration
– Google invented Linux control groups
– Standard deployment interface
– Scale rapidly (e.g., Pokemon Go)
– Open source (unlike Docker Swarm)

11March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Container orchestration

• Kubernetes orchestration
– Handle multiple containers and start each one at the right time
– Handle storage
– Deal with hardware and container failure
– Add remove containers in response to demand
– Integrates with the Docker engine, which runs the actual container

12March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

CS 419 3/22/18

© 2017 Paul Krzyzanowski 3

Containers & Security

Primary goal was software distribution, not security

– Makes moving & running a collection of software simple
• E.g., Docker Container Format

– Everything at Google is deployed & runs in a container
• Over 2 billion containers started per week (2014)
• lmctfy (“Let Me Contain That For You”)

– Google’s old container tool – similar to Docker and LXC (Linux Containers)
• Then Kubernetes to manage multiple containers & their storage

March 21, 2018 CS 419 © 2018 Paul Krzyzanowski 13

Containers & Security
• But there are security benefits

– Containers use namespaces, control groups, & capabilities
• Restricted capabilities by default
• Isolation among containers

– Containers are usually minimal and application-specific
• Just a few processes
• Minimal software & libraries
• Fewer things to attack

– They separate policy from enforcement
– Execution environments are reproducible

• Easy to inspect how a container is defined
• Can be tested in multiple environments

– Watchdog-based restarting: helps with availability
– Containers help with comprehension errors

• Decent default security without learning much
• Also ability to enable other security modules

14March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Security Concerns
• Kernel exploits

– All containers share the same kernel

• Denial of service attacks
– If one container can monopolize a resource, others suffer

• Privilege escalation
– Shouldn't happen with capabilities ... But there might be bugs

• Origin integrity
– Where is the container from and has it been tampered?

15March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Sandboxes

March 21, 2018 CS 419 © 2018 Paul Krzyzanowski 16

The sandbox

• A restricted area where code can play in

• Allow users to download and execute untrusted applications with limited
risk

• Restrictions can be placed on what an application is allowed to do in its
sandbox

• Untrusted applications can execute in a trusted environment

Jails & containers are a form of sandboxing
… but we want to focus on giving users the ability to run apps

sand•box, ’san(d)-"bäks, noun. Date: 1688
: a box or receptacle containing loose sand: as
a: a shaker for sprinkling sand on wet ink b: a
box that contains sand for children to play in

17March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

System Call Interposition
• System calls interface with resources

– An application must use system calls to access any resources, initiate attacks
… and cause any damage
• Modify/access files/devices: creat, open, read, write, unlink, chown, chgrp, chmod, …
• Access the network: socket, bind, connect, send, recv

• Interposition
– Intercept & inspect an app’s system calls

18March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

CS 419 3/22/18

© 2017 Paul Krzyzanowski 4

Example: Janus
App sandboxing tool implemented as a loadable kernel module

19

User space

Kernel space

Application Environment

Process
Process

Process

System call entry
mod_janus

Janus

Policy
Engine

open(“file.txt”) result

Kernel

result
Deny

open(“file.txt”)

Allow
open(“file.txt”)

op
en

(“f
ile

.tx
t”)

A
llo

w
 /

D
en

y

March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Example: Janus
• Policy file defines allowable files and network operations

• Dedicated policy per process
– Policy engine reads policy file
– Forks
– Child process execs application
– All accesses to resources are screened by Janus

• System call entry points contain hooks
– Redirect control to mod_Janus
– Module tells the user-level Janus process that a system call has been

requested
• Process is blocked
• Janus process queries the module for details about the call
• Makes a policy decision

20March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Implementation Challenge

Janus has to mirror the state of the operating system!

• If process forks, the Janus monitor must fork

• Keep track of the network protocol

– socket, bind, connect, read/write, shutdown

• Does not know if certain operations failed

• Gets tricky if file descriptors are duplicated

• Remember filename parsing?

– We have to figure out the whole dot-dot (..) thing!

– Have to keep track of changes to the current directory too

• App namespace can change if the process does a chroot

• What if file descriptors are passed via Unix domain sockets?

– sendmsg, recvmsg

• Race conditions: TOCTTOU

21March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Web plug-ins

• External binaries that add capabilities to a browser

• Loaded when content for them is embedded in a page

• Examples: Adobe Flash, Adobe Reader, Java

22March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Chromium Native Client (NaCl)
• Designed for

– Safe execution of platform-independent untrusted native code in a browser
– Compute-intensive applications
– Interactive applications that use resources of a client

• Two types of code: trusted & untrusted
– Untrusted has to run in a sandbox
– Pepper Plugin API (PPAPI): portability for 2D/3D graphics & audio

• Untrusted native code
– Built using NaCl SDK or any compiler that follows alignment rules and

instruction restrictions
• GNU-based toolchain, custom versions of gcc/binutils/gdb, libraries
• 32-bit x86 support

– NaCl statically verifies the code to check for use of privileged instructions

23March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Chromium Native Client (NaCl)

Two sandboxes
– Outer sandbox: restricts capabilities using system call interposition
– Inner sandbox: uses x86 segmentation to isolate memory among apps

24

Browser

Untrusted programUntrusted program

NaCl runtime

IPC NaCl sandbox syscall

Operating System

Native syscall Chrome sandbox syscall

March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

CS 419 3/22/18

© 2017 Paul Krzyzanowski 5

Java Language

• Type-safe & easy to use
– Memory management and range checking

• Designed for an interpreted environment: JVM

• No direct access to system calls

25March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Java Sandbox
1. Bytecode verifier: verifies Java bytecode before it is run

• Disallow pointer arithmetic
• Automatic garbage collection
• Array bounds checking
• Null reference checking

2. Class loader: determines if an object is allowed to add classes
• Ensures key parts of the runtime environment are not overwritten
• Runtime data areas (stacks, bytecodes, heap) are randomly laid out

3. Security manager: enforces protection domain
• Defines the boundaries of the sandbox (file, net, native, etc. access)
• Consulted before any access to a resource is allowed

26March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

JVM Security

• Complex process

• ~20 years of bugs … hope the big ones have been found!

• Buffer overflows found in the C support library
– C support library buggy in general

• Generally, the JVM is considered insecure
– But Java in general is pretty secure

• Array bounds checking, memory management
• Security manager with access controls

– Use of native methods allows you to bypass security checks

27March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

OS-Level Sandboxes

Example: the Apple Sandbox

• Create a list of rules that is consulted to see if an operation is permitted

• Components:

– Set of libraries for initializing/configuring policies per process

– Server for kernel logging

– Kernel extension using the TrustedBSD API for enforcing individual policies

– Kernel support extension providing regular expression matching for policy

enforcement

• sandbox-exec command & sandbox_init function

– sandbox-exec: calls sandbox_init() before fork() and exec()
– sandbox_init(kSBXProfileNoWrite, SANDBOX_NAMED, errbuf);

28March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Apple sandbox setup & operation

sandbox_init:
– Convert human-readable policies into a binary format for the kernel

– Policies passed to the kernel to the TrustedBSD subsystem

– TrustedBSD subsystem passes rules to the kernel extension

– Kernel extension installs sandbox profile rules for the current process

Operation: intercept system calls

– System calls hooked by the TrustedBSD layer will pass through

Sandbox.kext for policy enforcement

– The extension will consult the list of rules for the current process

– Some rules require pattern matching (e.g., filename pattern)

29March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Apple sandbox policies

Some pre-written profiles:
– Prohibit TCP/IP networking

– Prohibit all networking

– Prohibit file system writes
– Restrict writes to specific locations (e.g., /var/tmp)

– Perform only computation: minimal OS services

30March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

CS 419 3/22/18

© 2017 Paul Krzyzanowski 6

Virtual Machines

March 21, 2018 CS 419 © 2018 Paul Krzyzanowski 31

Virtual CPUs (sort of)
What time-sharing operating systems give us

• Each process feels like it has its own CPU & memory
– But cannot execute privileged CPU instructions

(e.g., modify the MMU or the interval timer, halt the processor, access I/O)

• Illusion created by OS preemption, scheduler, and MMU

• User software has to “ask the OS” to do system-related functions

• Containers, BSD Jails, namespaces give us operating system-level
virtualization

March 21, 2018 CS 419 © 2018 Paul Krzyzanowski 32

Process Virtual Machines

CPU interpreter running as a process

• Pseudo-machine with interpreted instructions
– 1966: O-code for BCPL
– 1973: P-code for Pascal
– 1995: Java Virtual Machine (JIT compilation added)
– 2002: Microsoft .NET CLR (pre-compilation)
– 2003: QEMU (dynamic binary translation)
– 2008: Dalvik VM for Android
– 2014: Android Runtime (ART) – ahead of time compilation

• Advantage: run anywhere, sandboxing capability

• No ability to even pretend to access the system hardware
– Just function calls to access system functions
– Or “generic” hardware

33March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Machine Virtualization

34March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Machine Virtualization
Normally all hardware and I/O managed by one operating system

Machine virtualization
– Abstract (virtualize) control of hardware and I/O from the OS
– Partition a physical computer to act like several real machines

• Manipulate memory mappings
• Set system timers
• Access devices

– Migrate an entire OS & its applications from one machine to another

1972: IBM System 370
– Allow kernel developers to share a computer

35March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Why are VMs popular?

• Wasteful to dedicate a computer to each service
– Mail, print server, web server, file server, database

• If these services run on a separate computer
– Configure the OS just for that service
– Attacks and privilege escalation won’t hurt other services

36March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

CS 419 3/22/18

© 2017 Paul Krzyzanowski 7

Hypervisor

• Hypervisor: Program in charge of virtualization
– Aka Virtual Machine Monitor
– Provides the illusion that the OS has full access to the hardware
– Arbitrates access to physical resources
– Presents a set of virtual device interfaces to each host

37March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Machine Virtualization
An OS is just a bunch of code!

• Privileged vs. unprivileged instructions

• If regular applications execute privileged instructions, they trap

• Operating systems are allowed to execute privileged instructions

• If running kernel code, the VMM catches the trap and emulates the
instruction
– Trap & Emulate

38March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Hypervisor

Application or Guest OS runs until:
– Privileged instruction traps
– System interrupts
– Exceptions (page faults)
– Explicit call: VMCALL (Intel) or VMMCALL (AMD)

39

Hypervisor (Virtual Machine Monitor)

Operating System & Applications

MMU emulation CPU or device
emulation I/O emulation

Page
Fault

Instruction
Fault

Virtual
IRQ

Unprivileged

Privileged

March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Intel & ARM Didn’t Make VM Easy

• Intel/AMD systems prior to Core 2 Duo (2006) did not support trapping
privileged instructions

• Most ARM architectures also did not trap on certain privileged
instructions
– Hardware support added in Cortex-A15 (ARMv7 Virtualization Extension): 2011

• Two approaches

– Binary translation (BT)
• Scan instruction stream on the fly (when page is loaded) and replace privileged

instructions with instructions that work with the virtual hardware (VMware approach)

– Paravirtualization

• Don’t use non-virtualizable instructions (Xen approach)

• Invoke hypervisor calls explicitly

40March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Hardware support for virtualization

Root mode (Intel example)
– Layer of execution more privileged than the kernel

apps

Guest OS

VMM

hardware

Non-root mode
privilege levels

Root mode
privilege level

OS requests trap
to VMM

RING 0

RING 1

RING 2

RING 3apps

Guest OS RING 0

RING 1

RING 2

RING 3

Without virtualization

41

sy
sc

al
l

Guest mode
privilege level

March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Architectural Support

• Intel Virtual Technology

• AMD Opteron

Guest mode execution: can run privileged instructions directly
– E.g., a system call does not need to go to the VM

– Certain privileged instructions are intercepted as VM exits to the VMM

– Exceptions, faults, and external interrupts are intercepted as VM exits

– Virtualized exceptions/faults are injected as VM entries

42March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

CS 419 3/22/18

© 2017 Paul Krzyzanowski 8

CPU Architectural Support
• Setup

– Turn VM support on/off
– Configure what controls VM exits
– Processor state

• Saved & restored in guest & host areas

• VM Entry: go from hypervisor to VM
– Load state from guest area

• VM Exit
– VM-exit information contains cause of exit
– Processor state saved in guest area
– Processor state loaded from host area

43March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Two Approaches to Running VMs

1. Native VM (hypervisor model)

2. Hosted VM

44March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Native Virtual Machine

Native VM (or Type 1 or Bare Metal)
– No primary OS
– Hypervisor is in charge of access to the devices and scheduling
– OS runs in “kernel mode” but does not run with full privileges

Applications

OS

Virtual Machine

Virtual Machine Monitor (Hypervisor)

Applications

OS

Virtual Machine

Applications

OS

Virtual Machine

Physical Machine

45

Example:
VMware ESX

Device driver

March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Hosted Virtual Machine
Hosted VM

– VMM runs without special privileges
– Primary OS responsible for access to the raw machine

• Lets you use all the drivers available for that primary OS
– Guest operating systems run under a VMM
– VMM invoked by host OS

• Serves as a proxy to the host OS for access to devices

Applications

Host OS VM Driver

Applications

Guest OS

VMM

Physical Machine

46

Example:
VMware

Workstation

Device driver

Device emulation

March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Security Assumptions

• Attacks & malware can target the guest OS & apps

• Malware cannot escape from the infected VM
– Cannot infect the host OS
– Cannot infect the VMM
– Cannot infect other VMs on the same computer

47March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

Covert Channels

48

Classified VM Public VM

Classified
Data Malware Malware

Listener

VMM

1. Malware can perform CPU-intensive task at specific times
2. Listener can do CPU-intensive tasks and measure completion times
This allows malware to send a bit pattern:

malware working = 1 = slowdown on listener
Depends on scheduler but there are other mechanisms too… like memory access

March 22, 2018 CS 419 © 2018 Paul Krzyzanowski

Covert channel
– Secret communication channel

between components that are not
allowed to communicate

Side channel attack
– Communication using some aspect

of a system's behavior

CS 419 3/22/18

© 2017 Paul Krzyzanowski 9

The end

49March 21, 2018 CS 419 © 2018 Paul Krzyzanowski

