CS 419

3/22/18

-

Computer Security
05. Confinement

Spring 2018

March 21, 2018

-

Containers

March 21, 2018 CS 419 ©2018 Paul Krzyzanowski

How did we address these problems?

-

» Sysadmin effort
— Service downtime, frustration, redeployment

* Run every service on a separate system
— Mail server, database, web server, app server, ...
— Expensive! ... and overkill

* Deploy virtual machines
— Kind of like running services on separate systems
— Each service gets its own instance of the OS and all supporting
software
— Heavyweight approach
« Time share between operating systems

March 21, 2018 S 419 © 2018 Paul Krzyzanowski

(. 7
Last Time
« chroot
* FreeBSD Jails
« Linux namespaces, capabilities, and control groups
— Control groups
« Allow processes to be grouped together — control resources for the group
— Capabilities
« Limit what root can do for a process & its children
— Namespaces
 Restrict what a process can see & who it can interact with:
PIDs, User IDs, mount points, IPC, network
& - . J
(\ . I
What's the main problem?
« Installing software packages can be a pain
— Dependencies
» Running multiple packages on one system can be a pain
— Updating a package can update a library or utility another uses
+ Causing something else to break
— No isolation among packages
+ Something goes awry in one service impacts another
» Migrating services to another system is a pain
— Re-deploy & reconfigure
- J
Varcn 21, 2018 5 419 ©2018 Paul Kizyzanowsia P
(. i 7
What are containers?
Containers: created to package & distribute software
— Focus on services, not end-user apps
— Software systems usually require a bunch of stuff:
« Libraries, multiple applications, configuration tools, ...
— Container = image containing the application environment
+ Can be installed and run on any system
Key insight:
Encapsulate software, configuration, & dependencies into
one package
- _ J

© 2017 Paul Krzyzanowski

CS 419

3/22/18

How are containers built?

« Control groups
— Meters & limits on resource use
+ Memory, disk (I/O bandwidth), CPU (set %), network (traffic priority)

+ Namespaces
— Isolates what processes can see & access
— Process IDs, host name, mounted file systems, users, IPC
— Network interface, routing tables, sockets

« Capabilities
— Keep root access but restrict what it can do

« Copy on write file system
— Instantly create new containers without copying the entire package
— Storage system tracks changes

* AppArmor
— Pathname-based mandatory access controls
— Confines programs to a set of listed files & capabilities

March 21, 2018 ©S 419 © 2018 Paul Krayz

(N
A container feels like a VM
» Separate
— Process space, network interface, network configuration, libraries, ...
— Limited root powers
» But:
— All containers on a system share the same OS & kernel modules
- - J
e N

Initially ... Docker

« First super-popular container

« Designed to provide Platform-as-a-Service capabilities
— Combined Linux cgroups & namespaces into a single easy-to-use
package
— Enabled applications to be deployed consistently anywhere as one
package

» Docker Image
— Package containing applications & supporting libraries & files
— Can be deployed on many environments

* Make deployment easy
— Git-like commands: docker push, docker commit, ..
— Make it easy to reuse image and track changes
— Download updates instead of entire images

+ Keep Docker images immutable (read-only)
— Run containers by creating a writable layer to temporarily store runtime
L changes

J

March 21, 2018 CS 419 ©2018 Paul Krzyzanowski 9

Later Docker additions

» Docker Hub: cloud based repository for docker images

* Docker Swarm: deploy multiple containers as one
abstraction

-

March 21,2018 €S 4192018 Paul Krzyzanowski

Container Orchestration

* We wanted to manage containers across systems

* Multiple efforts
— Marathon/Apache Mesos (2014), Kubernetes (2015), Nomad, Docker
Swarm, ...

» Google designed Kubernetes for container orchestration
— Google invented Linux control groups
— Standard deployment interface
— Scale rapidly (e.g., Pokemon Go)
— Open source (unlike Docker Swarm)

.

March 21, 2018 S 419 © 2018 Paul Krzyzanowski 1"

=
Container orchestration

» Kubernetes orchestration
— Handle multiple containers and start each one at the right time
— Handle storage
— Deal with hardware and container failure
— Add remove containers in response to demand
— Integrates with the Docker engine, which runs the actual container

-

March 21, 2018 ©S 419 © 2018 Paul Krzyzanowski

© 2017 Paul Krzyzanowski

CS 419 3/22/18

(7 (A
Containers & Security Containers & Security
Primary goal was software distribution, not security + But there are security benefits
— Cc iners use namesp control groups, & capabilities
. . . . + Restricted bilities by default
— Makes moving & running a collection of software simple estricted capablities by defau
K * Isolation among containers
* E.g.. Docker Container Format — Containers are usually minimal and application-specific
« Just a few processes
— Everything at Google is deployed & runs in a container + Minimal software & libraries
 Over 2 billion containers started per week (2014) « Fewer things to attack
« Imctfy (“Let Me Contain That For You") — They separate policy from enforcement
— Google’s old container tool — similar to Docker and LXC (Linux Containers) — Execution environments are reproducible
« Then Kubernetes to manage multiple containers & their storage * Easy to inspect how a container is defined
+ Can be tested in multiple environments
— Watchdog-based restarting: helps with availability
— Containers help with comprehension errors
+ Decent default security without learning much
« Also ability to enable other security modules
- J & J
Varen 21,2018 S 419 ©.2018 Paul Kizyzanowsia = Waren 21,2018 S 4190 2018 Paut Kzyzanowsia T
e . N (. 7
Security Concerns
« Kernel exploits
— All containers share the same kernel
« Denial of service attacks
— If one container can monopolize a resource, others suffer Sa nd boxes
« Privilege escalation
— Shouldn't happen with capabilities ... But there might be bugs
« Origin integrity
— Where is the container from and has it been tampered?
- J & J
March 21,2018 €S 41902018 Paul Kizyzanowskd 15 March 21,2018 541902018 Paul Kzyzanowsid ®
e N r ")
The sandbox System Call Interposition

System calls interface with resources

— An application must use system calls to access any resources, initiate attacks
... and cause any damage
+ Modify/access files/devices: creat, open, read, write, unlink, chown, chgrp, chmod, ...
* Access the network: socket, bind, connect, send, recv

sand+box, ’san(d)-"biks, noun. Date: 1688
: a box or receptacle containing loose sand: as
a: a shaker for sprinkling sand on wet ink b: a

box that contains sand for children to play in

Interposition
— Intercept & inspect an app’s system calls

« Arestricted area where code can play in

« Allow users to download and execute untrusted applications with limited
risk

« Restrictions can be placed on what an application is allowed to do in its
sandbox

« Untrusted applications can execute in a trusted environment

Jails & containers are a form of sandboxing
... but we want to focus on giving users the ability to run apps
= J - J

7 March 21, 2018 ©S 419 © 2018 Paul Krzyzanowski

March 21, 2018 S 419 © 2018 Paul Krzyzanowski

© 2017 Paul Krzyzanowski 3

CS 419

3/22/18

=
Example: Janus

App sandboxing tool implemented as a loadable kernel module

Janus

i 3
: Policy 3
: Engine :

Application Environment

Process E

s

Example: Janus

-

« Policy file defines allowable files and network operations

» Dedicated policy per process
— Policy engine reads policy file
— Forks
— Child process execs application
— All accesses to resources are screened by Janus

» System call entry points contain hooks
— Redirect control to mod_Janus
— Module tells the user-level Janus process that a system call has been
requested
+ Process is blocked
+ Janus process queries the module for details about the call
+ Makes a policy decision

March 21, 2018 ©S 419 © 2018 Paul Krzyzanowski

5 2.
2 3 User space
E N Kerel space
open(“file.txt") result S 2
open(file.txt’) & <
Syst Il entr |
ystem call entry mod_janus]
Kemnel Gpen(“file.txt")
-
Wareh 21, 2018 C5 419.© 2018 Paul Kezyzanowski)
-
Implementation Challenge
Janus has to mirror the state of the operating system!
« If process forks, the Janus monitor must fork
« Keep track of the network protocol
— socket, bind, connect, read/write, shutdown
« Does not know if certain operations failed
« Gets tricky if file descriptors are duplicated
+ Remember filename parsing?
— We have to figure out the whole dot-dot (..) thing!
— Have to keep track of changes to the current directory too
« App namespace can change if the process does a chroot
+ What if file descriptors are passed via Unix domain sockets?
— sendmsg, recvmsg
« Race conditions: TOCTTOU
-
March 21, 2018 ©S419.© 2018 Paul Krzyzanowski 2t

s

Web plug-ins

-

« External binaries that add capabilities to a browser
» Loaded when content for them is embedded in a page

» Examples: Adobe Flash, Adobe Reader, Java

March 21,2018 €S 4192018 Paul Krzyzanowski

(" Chromium Native Client (NaCl) @ chrome

« Designed for
— Safe execution of platform-independent untrusted native code in a browser
— Compute-intensive applications
— Interactive applications that use resources of a client

« Two types of code: trusted & untrusted
— Untrusted has to run in a sandbox
— Pepper Plugin API (PPAPI): portability for 2D/3D graphics & audio

« Untrusted native code
— Built using NaCl SDK or any compiler that follows alignment rules and
instruction restrictions
+ GNU-based toolchain, custom versions of gcc/binutils/gdb, libraries
+ 32-bit x86 support
— NaCl statically verifies the code to check for use of privileged instructions

.

March 21, 2018 S 419 © 2018 Paul Krzyzanowski 23

s

Chromium Native Client (NaCl)

-

Two sandboxes
— Outer sandbox: restricts capabilities using system call interposition
— Inner sandbox: uses x86 segmentation to isolate memory among apps

Browser N 4

ﬁ NaCl sandbox syscall
NaCl runtime

Chrome sandbox syscall

I Native syscall

[Operating System J

March 21, 2018 ©S 419 © 2018 Paul Krzyzanowski

© 2017 Paul Krzyzanowski

CS 419

3/22/18

s

Java Language

-

» Type-safe & easy to use
— Memory management and range checking

* Designed for an interpreted environment: JVM

» No direct access to system calls

March 21, 2018

JVM Security

-

» Complex process
+ ~20 years of bugs ... hope the big ones have been found!

« Buffer overflows found in the C support library
— C support library buggy in general

» Generally, the JVM is considered insecure
— But Java in general is pretty secure
« Array bounds checking, memory management
« Security manager with access controls
— Use of native methods allows you to bypass security checks

March 21, 2018 CS 419 ©2018 Paul Krzyzanowski 2

Vs

Apple sandbox setup & operation

-

sandbox_init:
— Convert human-readable policies into a binary format for the kernel
— Policies passed to the kernel to the TrustedBSD subsystem
— TrustedBSD subsystem passes rules to the kernel extension
— Kernel extension installs sandbox profile rules for the current process

Operation: intercept system calls
— System calls hooked by the TrustedBSD layer will pass through
Sandbox.kext for policy enforcement
— The extension will consult the list of rules for the current process
— Some rules require pattern matching (e.g., filename pattern)

March 21, 2018 S 419 © 2018 Paul Krzyzanowski 29

© 2017 Paul Krzyzanowski

(A
Java Sandbox
1. Bytecode verifier: verifies Java bytecode before it is run
« Disallow pointer arithmetic
+ Automatic garbage collection
« Array bounds checking
* Null reference checking
2. Class loader: determines if an object is allowed to add classes
« Ensures key parts of the runtime environment are not overwritten
» Runtime data areas (stacks, bytecodes, heap) are randomly laid out
3. Security manager: enforces protection domain
« Defines the boundaries of the sandbox (file, net, native, etc. access)
« Consulted before any access to a resource is allowed
& J
Waren 21,2018 %
(. 7
OS-Level Sandboxes
Example: the Apple Sandbox
+ Create a list of rules that is consulted to see if an operation is permitted
« Components:
— Set of libraries for initializing/configuring policies per process
— Server for kernel logging
— Kernel extension using the TrustedBSD API for enforcing individual policies
— Kernel support extension providing regular expression matching for policy
enforcement
» sandbox-exec command & sandbox_init function
— sandbox-exec: calls sandbox_init() before fork() and exec()
— sandbox_init (kSBXProfileNoWrite, SANDBOX_NAMED, errbuf);
& J
March 21,2018 541902018 Paul Kzyzanowsid »
(. L 7
Apple sandbox policies
Some pre-written profiles:
— Prohibit TCP/IP networking
— Prohibit all networking
— Prohibit file system writes
— Restrict writes to specific locations (e.g., /var/tmp)
— Perform only computation: minimal OS services
&

March 21, 2018 ©S 419 © 2018 Paul Krzyzanowski 3

3/22/18

Virtual Machines

March 21, 2018

Virtual CPUs (sort of)

What time-sharing operating systems give us

« Each process feels like it has its own CPU & memory

— But cannot execute privileged CPU instructions
(e.g., modify the MMU or the interval timer, halt the processor, access 1/0)

« lllusion created by OS preemption, scheduler, and MMU

« User software has to “ask the OS” to do system-related functions

« Containers, BSD Jails, namespaces give us operating system-level
virtualization

March 21, 2018

Process Virtual Machines

CPU interpreter running as a process

* Pseudo-machine with interpreted instructions
— 1966: O-code for BCPL
— 1973: P-code for Pascal
— 1995: Java Virtual Machine (JIT compilation added)
— 2002: Microsoft .NET CLR (pre-compilation)
— 2003: QEMU (dynamic binary translation)
— 2008: Dalvik VM for Android
— 2014: Android Runtime (ART) — ahead of time compilation

» Advantage: run anywhere, sandboxing capability

 No ability to even pretend to access the system hardware
— Just function calls to access system functions
— Or “generic” hardware

March 21, 2018 CS 419 ©2018 Paul Krzyzanowski 33

-

Machine Virtualization

March 21,2018 ©S 419 ©2018 Paul Kzyzanowski 3

Machine Virtualization

Normally all hardware and 1/0O managed by one operating system

Machine virtualization
— Abstract (virtualize) control of hardware and I/O from the OS
— Partition a physical computer to act like several real machines
« Manipulate memory mappings
« Set system timers
« Access devices
— Migrate an entire OS & its applications from one machine to another

1972: IBM System 370
— Allow kernel developers to share a computer

March 21, 2018 S 419 © 2018 Paul Krzyzanowski

© 2017 Paul Krzyzanowski

s

Why are VMs popular?

-

» Wasteful to dedicate a computer to each service
— Mail, print server, web server, file server, database

« If these services run on a separate computer
— Configure the OS just for that service
— Attacks and privilege escalation won't hurt other services

March 21, 2018 ©S 419 © 2018 Paul Krzyzanowski 3

CS 419 3/22/18

(7 (A
Hypervisor Machine Virtualization
* Hypervisor: Program in charge of virtualization An OS is just a bunch of code!
— Aka Virtual Machine Monitor « Privileged vs. unprivileged instructions
— Provides the illusion that the OS has full access to the hardware
— Arbitrates access to physical resources
— Presents a set of virtual device interfaces to each host « If regular applications execute privileged instructions, they trap
» Operating systems are allowed to execute privileged instructions
« If running kernel code, the VMM catches the trap and emulates the
instruction
— Trap & Emulate
- . - J - J
(. 1 e i , N
Hypervisor Intel & ARM Didn’t Make VM Easy
Application or Guest OS runs until: * Intel/AMD systems prior to Core 2 Duo (2006) did not support trapping
— Privileged instruction traps privileged instructions
— System interrupts » Most ARM architectures also did not trap on certain privileged
— Exceptions (page faults) instructions
— Explicit call: VMCALL (Intel) or VMMCALL (AMD) — Hardware support added in Cortex-A15 (ARMv7 Virtualization Extension): 2011

» Two approaches
— Binary translation (BT)

+ Scan instruction stream on the fly (when page is loaded) and replace privileged
instructions with instructions that work with the virtual hardware (VMware approach)

— Paravirtualization
+ Don’t use non-virtualizable instructions (Xen approach)
+ Invoke hypervisor calls explicitly

Operating System & Applications
Unprivileged

Instruction Virtual

- - i - - - g - - <5 RQ e

Privileged
MMU emulation 1/0 emulation
Hypervisor (Virtual Machine Monitor)
- J . J
March 21,2018 €S 41902018 Paul Kizyzanowskd) March 21,2018 541902018 Paul Kzyzanowsid 2
(R _ _ M (_ 7
Hardware support for virtualization Architectural Support
Root mode (Intel example) * Intel Virtual Technology
— Layer of execution more privileged than the kernel
* AMD Opteron
Non-root mode Guest mode execution: can run privileged instructions directly
m RING 3 privilege levels, RING 3
— E.g., a system call does not need to go to the VM
:] RING 2 G2 — Certain privileged instructions are intercepted as VM exits to the VMM
:] RING 1 1 — Exceptions, faults, and external interrupts are intercepted as VM exits
RING 0 GH?S' mode o — Virtualized exceptions/faults are injected as VM entries
privilege level
0S requests trap
Without virtualization Root mode to VMM
privilege level
- J & J
Warcn 21,2018 CS 419 ©.2018 Paul Kizyzanowsia u Warcn 21,2018 5 419.© 2018 Paul Kzyzanowsia 2

© 2017 Paul Krzyzanowski 7

CS 419

3/22/18

(" CPU Architectural Support

-

« Setup
— Turn VM support on/off
— Configure what controls VM exits
— Processor state
« Saved & restored in guest & host areas

« VM Entry: go from hypervisor to VM
— Load state from guest area

« VM Exit
— VM-exit information contains cause of exit
— Processor state saved in guest area
— Processor state loaded from host area

[Two Approaches to Running VMs

March 21, 2018 S 419 © 2018 Paul Krzyzanowski 43

-

1. Native VM (hypervisor model)
2. Hosted VM

March 21, 2018 ©S 419 © 2018 Paul Krzyzanowski

(Native Virtual Machine

Native VM (or Type 1 or Bare Metal)
— No primary OS
— Hypervisor is in charge of access to the devices and scheduling
— OS runs in “kernel mode” but does not run with full privileges

Applications Applications

March 21, 2018 €S 419 ©2018 Paul Krzyzanowski 45

Hosted Virtual Machine

Hosted VM
— VMM runs without special privileges
— Primary OS responsible for access to the raw machine
« Lets you use all the drivers available for that primary OS
— Guest operating systems run under a VMM
— VMM invoked by host OS
« Serves as a proxy to the host OS for access to devices

Applications
Guest OS

Example:
VMware
Worksta

March 21,2018

©S 419 ©2018 Paul Kzyzanowski

(Security Assumptions

-

* Attacks & malware can target the guest OS & apps

» Malware cannot escape from the infected VM
— Cannot infect the host OS
— Cannot infect the VMM
— Cannot infect other VMs on the same computer

March 21, 2018 S 419 © 2018 Paul Krzyzanowski a7

(Covert Channels

Covert channel Side channel attack
— Secret communication channel
between components that are not

allowed to communicate

of a system's behavior

Classified VM Public VM
Classified Mal Malware
Data lalware > Listener

VMM

1. Malware can perform CPU-intensive task at specific times
2. Listener can do CPU-intensive tasks and measure completion times
This allows malware to send a bit pattern:

malware working = 1 = slowdown on listener

Depends on scheduler but there are other mechanisms too... like memory access

— Communication using some aspect

March 22, 2018 ©S 419 © 2018 Paul Krzyzanowski

8

© 2017 Paul Krzyzanowski

CS 419 3/22/18

The end

© 2017 Paul Krzyzanowski 9

