
Computer Security

05r. Assignment 4 discussion

Paul Krzyzanowski

Rutgers University

Spring 2017

1 March 4, 2017 CS 419 © 2017 Paul Krzyzanowski

Assignment 4 hints

Level 0 Goal:

– Overflow the buffer to change the return address on the stack

– When the function getbuf returns, make it go to smoke

First, we need to find the address of the smoke function

– Two ways to do this:

1. Use the nm (display name list) command to dump the symbol table

$ nm bufbomb | grep smoke

1. Use gdb and print the value of smoke

$ gdb bufbomb

(gdb) print smoke

March 4, 2017 CS 419 © 2017 Paul Krzyzanowski 2

Assignment 4 hints: level 0

Now create the exploit string:

– Fill the 12 bytes of the buffer

– Fill 4 more bytes to overwrite the saved %ebp register (frame pointer)

– Write the return address to overwrite the saved return address

– Create a file (e.g., exploit-0.txt) with contents:

00 11 22 33 44 55 66 77 88 99 aa bb 1a 1b 1c 1d RR RR RR RR

Run it

$ cat exploit-0.txt | ./sendstring > exploit-0

$ bufbomb < exploit-0

March 4, 2017 CS 419 © 2017 Paul Krzyzanowski 3

Return address (4 bytes)

Saved frame pointer (4 bytes)

buf (12 bytes)

RR RR RR RR is the return

address

This could be anything – just fill the buffer – but let’s

pick something we can easily recognize in gdb

Intel uses little endian encodings

The address 0x12345678

Will be written to the buffer as

0x78 0x56 0x34 0x12

Make sure it’s in the right order in your buffer.

March 4, 2017 CS 419 © 2017 Paul Krzyzanowski 4

What if it doesn’t work?

You’ll have to debug

$ gdb bufbomb – start the debugger

(gdb) break getbuf – set a breakpoint at getbuf

(gdb) run –t your_net_id < exploit-0
 – run the program to the breakpoint

Breakpoint 1, 0x08048aa8 in getbuf ()

March 4, 2017 CS 419 © 2017 Paul Krzyzanowski 5

What if it doesn’t work?

March 4, 2017 CS 419 © 2017 Paul Krzyzanowski 6

(gdb) disas - disassemble the current function

 0x08048aa2 <+0>: push %ebp

 0x08048aa3 <+1>: mov %esp,%ebp

 0x08048aa5 <+3>: sub $0x10,%esp

=> 0x08048aa8 <+6>: lea -0xc(%ebp),%eax

 0x08048aab <+9>: mov %eax,(%esp)
 0x08048aae <+12>: call 0x8048bf1 <Gets>

 0x08048ab3 <+17>: mov $0x1,%eax

 0x08048ab8 <+22>: leave

 0x08048ab9 <+23>: ret

End of assembler dump.
(gdb) break *0x08048ab3 – set a break after call Gets

(gdb) c – run to the next breakpoint

(gdb) x/20b $sp – print 20 bytes at the stack pointer

 (buf starts after the first four bytes)

See if the data in the buffer is what you expected

Levels 1 hint

• You will need to give fizz a parameter

• This means that you will need to add extra data after the

address of fizz to modify what’s on the stack when getbuf

returns

• But think carefully about what the stack should look like

March 4, 2017 CS 419 © 2017 Paul Krzyzanowski 7

Level 2 hint

• You will need to write code to set global_int to cookie

• You can easily find the value of global_int via gdb

• But you also need to find the start of the buffer (buf)

• You can find this by looking at the stack pointer in getbuf

and figure out where getbuf allocates buf (look at the

disassembly

… or set a breakpoint in Gets and look around there

March 4, 2017 CS 419 © 2017 Paul Krzyzanowski 8

Level 2 hint

• To set the buffer, you’ll need to write a few lines of assembly

code

• If you don’t know it, you can figure it out

– Write a small C function that simply sets a global into to the value

– Compile it with cc –S t.c

– That creates an assembler file t.s

– Look through it. You’ll see the instruction that sets a value. You’ll also

see how you can push something on the stack and how you can

return

• The exploit code will go at the start of your buffer

– So the return address that you overwrite will have to be an address to

the start of the buffer

March 4, 2017 CS 419 © 2017 Paul Krzyzanowski 9

The end

10 March 4, 2017 CS 419 © 2017 Paul Krzyzanowski

