
Computer Security
08. Integrity & key exchange

Paul Krzyzanowski

Rutgers University

Spring 2018

1April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Message Integrity

2April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



McCarthy’s Spy Puzzle (1958)

The setting:

• Two countries are at war

• One country sends spies to the other country

• To return safely, spies must give the border guards a 
password

Conditions

• Spies can be trusted

• Guards chat – information given to them may leak

3April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



McCarthy’s Spy Puzzle

Challenge
– How can a border guard authenticate a person without knowing the 

password?

– Enemies cannot use the guard’s knowledge to introduce their own 
spies

4April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Solution to McCarthy’s puzzle

• Michael Rabin, 1958

• Use a one-way function, B = f (A)
– Guards get B

• Enemy cannot compute A if they know A

– Spies give A, guards compute f(A)
• If the result is B, the password is correct.

• Example function:
– Middle squares

• Take a 100-digit number (A), and square it
• Let B = middle 100 digits of 200-digit result

5April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



One-way functions
• Easy to compute in one direction
• Difficult to compute in the other

Examples:
Factoring:

pq = N EASY
find p,q given N DIFFICULT

Discrete Log:
ab mod c = N EASY
find b given a, c, N DIFFICULT

6

Basis for RSA

Basis for Diffie-Hellman 
& Elliptic Curve

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Example of a one-way function

Example with an 18 digit number

A = 289407349786637777

A2 = 83756614110525308948445338203501729

Middle square, B = 110525308948445338

Given A, it is easy to compute B

Given B, it is difficult to compute A

“Difficult” = no known short-cuts; requires an exhaustive search

7April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Cryptographic hash functions

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski 8



Cryptographic hash functions
Also known as a digests or fingerprints

Properties
– Arbitrary length input → fixed-length output

– Deterministic: you always get the same hash for the same message

– One-way function (pre-image resistance, or hiding)
• Given H, it should be difficult to find M such that H=hash(M)

– Collision resistant
• Infeasible to find any two different strings that hash to the same value:

Find M, M’ such that hash(M) = hash(M’)

– Output should not give any information about any of the input
• Like cryptographic algorithms, relies on diffusion

– Efficient
• Computing a hash function should be computationally efficient

9April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Hash functions are the basis of authentication

• Not encryption

• Can help us to detect:
– Masquerading:

• Insertion of message from a fraudulent source
– Content modification:

• Changing the content of a message
– Sequence modification:

• Inserting, deleting, or rearranging parts of a message
– Replay attacks:

• Replaying valid sessions

10April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



SHA-1 Overview

• Append the bit 1 to the message

• Pad message with 0 bits so its length = 448 mod 512

• Append length of message as a 64-bit big endian integer

• Initialize 5-word (160-bit) buffer to
a = 0x67452301  b = 0xefcdab89  c = 0x98badcfe
d = 0x10325476  e = 0xc3d2e1f0

• Process the message in 512-bit chunks
– Expand the 16 32-bit words into 80 32-bit words via XORs & shifts
– Iterate 80 times to create a hash for this chunk

• Various sets of ANDs, ORs, shifts, and shifts

– Add this hash chunk to the result so far

12

See https://www.saylor.org/site/wp-content/uploads/2012/07/SHA-1-1.pdf

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



SHA-2 Overview

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski 13

256-bit 
Initialization 
Vector (IV)

512-bits of 
message

Hash 
compression

Next 512-bits 
of message

Hash 
compression

Last 512-bits 
of message

Hash 
compression

256-bit hash
Bits defined by the standard



Popular hash functions
• MD5    R.I.P.

– 128 bits (rarely used now since weaknesses were found)

• SHA-1
– 160 bits – was widely used: checksum in Git & torrents
– Google demonstrated a collision attack in Feb 2017 

… Google had to run >9 quintillion SHA-1 computations to complete the attack
... but already being phased out since weaknesses were found earlier

– Used for message integrity in GitHub

• SHA-2 – believed to be secure
– Designed by the NSA; published by NIST 
– SHA-224, SHA-256, SHA-384, SHA-512

• e.g., Linux passwords used MD5 and now SHA-512
– SHA-256 used in bitcoin

• SHA-3 – believed to be secure
– 256 & 512 bit

14April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Linux commands

• sha1sum: create a SHA-1 hash

echo "hello, world!" | sha1sum
e91ba0972b9055187fa2efa8b5c156f487a8293a -

• md5sum: create an MD5 hash

echo "hello, world!" | md5sum
910c8bc73110b0cd1bc5d2bcae782511  -

15April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Collisions: The Birthday Paradox

How many people need to be in a room such that the 
probability that two people will have the same birthday is
> 0.5?

Your guess before you took a probability course: 183
– This is true to the question of “how many people need to be in a 

room for the probability that someone else will have the same 
birthday as Alice?”

Answer: 23

16

! " = 1 −
"! ' 365

"
365+

Approximate solution for # people required to have a 0.5 
chance of a shared birthday, where m = # days in a year " ≈ 2×/×0.5

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



The Birthday Paradox: Implications

• Searching for a collision with a pre-image (known message) 
is A LOT harder than searching for two messages that have 
the same hash

• Strength of a hash function is approximately ½ (# bits) 
– 256-bit hash function has a strength of approximately 128 bits

17April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Message Integrity

How do we detect that a message has been tampered?
• A cryptographic hash acts as a checksum

H(M) ≠ H(M′)

• Associate a hash with a message
– we’re not encrypting the message
– we’re concerned with integrity, not confidentiality 

18April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Hash Pointers

• We can use hash pointers instead of pointers in data 
structures

• Hash pointer = { pointer, hash(data) }

• This allows us to verify that the information we’re pointing 
to has not changed

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski 19



Hash Pointers: Linked Lists

• Add new data blocks to the end of the list

• Tamper Evident Log = blockchain

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski 20

Data

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

Hash Pointer head



Tamper detection

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski 21

Data

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

Suppose an adversary wants to data in this block

head



Tamper detection

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski 22

Data

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

Suppose an adversary wants to data in this block

Then this hash pointer needs to be changed.

head



Tamper detection

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski 23

Data

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

Suppose an adversary wants to data in this block

Then this hash pointer needs to be changed
But that will change the hash of this data block

So this hash pointer needs to be changed too
But now this data block hashes to a different value …

head



Tamper detection

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski 24

Data

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

The adversary will have to change all hash pointers back to the root.

If we’re holding on to the head of the list so an adversary cannot modify it, then 
we will be able to detect tampering.

head Need to change the head pointer too!



Merkle Trees: Binary trees with hash pointers

• Another tamper-resistant structure

• Only need to examine O(log2n) hashes to validate data

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski 25

H0=Hash(D0)

Data0

H1= Hash(D1)

Data1

H0,1=Hash(H0 || H1)

H2= Hash(D2)

Data2

H3= Hash(D3)

Data3

H2,3= Hash(H2 || H3)

H0-3=Hash(H0,1 || H2,3)root hash pointer:

Merkle Tree Hash pointer = { left_subtree, right_subtree, hash(left || right) }

a || b means a concatenated with b



Tamperproof Integrity:
Message Authentication Codes and
Digital Signatures

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski 26



Message Integrity: MACs
• We rely on hashes to assert the integrity of messages

• An attacker can create a new message & a new hash
and replace H(M) with  H(M′)

• So let’s create a checksum that relies on a key for validation

Message Authentication Code (MAC)

27April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Hash-based MAC
We can create a MAC from a cryptographic hash function

HMAC = Hash-based Message Authentication Code

HMAC(m, k) = H((opad ⊕ k) || H(ipad ⊕ k) || m))

Where

H = cryptographic hash function

opad = outer padding 0x5c5c5c5c … (01011100…)

ipad = inner padding 0x36363636… (00110110…)

k = secret key

m = message

⊕ = XOR,   || = concatenation

28

See RFC 2104

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Block cipher based MAC: CBC-MAC
• Cipher block chaining assures that every encrypted block is a 

function of all previous blocks

• CBC MAC uses a zero initialization vector

MAC = final ciphertext block – others are discarded

Examples: AES-CBC-MAC, DES-MAC

29

Block cipher

Plaintext0IV = 0

Ciphertext0

⊕
Key Block cipher

Plaintext1

⊕
Key

Block 0 Block 1

Block cipher

PlaintextN

⊕
Key

Block N

Ciphertext1 CiphertextN

Don’t use the same key for the MAC as for encrypting the message

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Using a MAC

30

Message
m

MAC

HMAC(m, k)

Message
m′

MAC′

Alice Bob

1. Bob receives the Message m’ and a MAC.
2. Knowing the key, k, he generates a MAC for the message:

MAC″ = HMAC(m′, k)
3. If MAC′ = MAC″, he’s convinced that the message has not been modified

modification?

MAC″

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski

Compute HMAC(m’, k):

Both have the shared key, k



Digital Signatures

• MACs rely on a shared key
– Anyone with the key can modify and re-sign a message

• Digital signature properties
– Only you can sign a message but anyone can validate it
– You cannot cut and paste the signature from one message to another
– An adversary cannot forge a signature

• Even after inspecting an arbitrary number of signed messages

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski 31



Digital Signature Primitives

1. Key generation
{ secret_key, verification_key } := gen_keys(key_size)

2. Signing
signature := sign(message, secret_key)

3. Validation
Isvalid := verify(verification_key, message, signature)

We sign hash(message) instead of the message
– We’d like the signature to be a small, fixed size
– We trust hashes to be collision-free
– We can use a signature in a hash pointer

• This will protect the integrity of the entire data structure

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski 32



Popular Digital Signature Algorithms

• DSA: Digital Signature Algorithm
– NIST standard
– Uses SHA-1 or SHA-2 hash
– Key pair based on difficulty of computing discrete logarithms

• ECDSA: Elliptic Curve Digital Signature Algorithm
– Variant of DSA that uses elliptic curve cryptography
– Used in bitcoin

• RSA cryptography
– Epri_key(H(M)) , Dpub_key(H(M)) 

Note: not Diffie-Hellman, which is only a key exchange algorithm
April 10, 2019 CS 419 © 2019 Paul Krzyzanowski 33



Alice Bob

Alice generates a hash of the message

Digital signatures: public key cryptography

35

H(P)

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



H(P)

Alice Bob

Alice encrypts the hash with her private key
This is her signature.

Digital signatures: public key cryptography

36

S=Ea(H(P))

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



H(P)

Alice Bob

Alice sends Bob the message & the encrypted hash

Digital signatures: public key cryptography

37

S=Ea(H(P))

modification?

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



H(P)

Alice Bob

1. Bob decrypts the hash using Alice’s public key
2. Bob computes the hash of the message sent by Alice

Digital signatures: public key cryptography

38

S=Ea(H(P))

H(P)

DA(S)

modification?

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



H(P)

Alice Bob

If the hashes match, the signature is valid
– the encrypted hash must have been generated by Alice

Digital signatures: public key cryptography

39

S=Ea(H(P))

H(P)

DA(S)

modification?

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Digital signatures & non-repudiation

• Digital signatures provide non-repudiation
– Only Alice could have created the signature because only Alice has her 

private key

• Proof of integrity
– The hash assures us that the original message has not been modified
– The encryption of the hash assures us that an attacker could not have

re-created the hash

40April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Alice Bob

Charles:
• Generates a hash of the message, H(P)
• Decrypts Alice’s signature with Alice’s public key

- Validates the signature: DA(S) ≟ H(P) 
• Decrypts Bob’s signature with Bob’s public key

- Validates the signature: DB(S) ≟ H(P) 

Digital signatures: multiple signers

41

H(P)

DA(S)

H(P)

S=Ea(H(P))

Charles

S’=Eb(H(P))

H(P)

DA(S)
DB(S’)

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Covert AND authenticated messaging

If we want to keep the message secret
– combine encryption with a digital signature

Use a session key:

– Pick a random key, K, to encrypt the message with a 
symmetric algorithm

– encrypt K with the public key of each recipient

– for signing, encrypt the hash of the message with 
sender’s private key

42April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



H(P)

Alice

Alice generates a digital signature by
encrypting the message with her private key

Covert and authenticated messaging

43

S=Ea(H(M))

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



H(P)

Alice

Alice picks a random key, K, and encrypts the message P
with it using a symmetric cipher

Covert and authenticated messaging

44

S=Ea(H(M))

C=EK(M)

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



H(P)

Alice

Alice encrypts the session key for each

recipient of this message using their public keys

Covert and authenticated messaging

45

S=Ea(H(M))

K K
C1=EB(K)

K
C2=EC(K)

for Charles

C=EK(M)

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



H(P)

Alice Bob

The aggregate message is sent to Bob & Charles

Covert and authenticated messaging

46

S=Ea(H(P))

K K
C1=EB(K)

K
C2=EC(K)

Message:

Signature:

Sender: Alice

Key for Bob: K

KKey for Charles:

Bob

Charles

Note: we do not have forward secrecy by doing this

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Public Keys as Identities

• A public signature verification key can be treated as an 
identity
– Only the owner of the corresponding private key will be able to 

create the signature

• New identities can be created by generating new random 
{private, public} key pairs

• Anonymous – no identity management
– A user is known by a random-looking public key
– Anybody can create a new identity at any time
– Anybody can create as many identities as they want
– A user can throw away an identity when it is no longer needed
– Example: Bitcoin identity = hash(public key)

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski 47



Certificates: Identity Binding

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski 48



Identity Binding

• How does Alice know Bob’s public key is really his?

• Get it from a trusted server?
– What if the enemy tampers with the server?
– Or intercepts Alice’s query to the server (or the reply)?
– What set of public keys does the server manage?
– How do you find it in a trustworthy manner?

• Another option
– Have a trusted party sign Bob’s public key
– Once signed, it is tamper-proof

49April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



X.509 v3 Digital Certificate

Certificate data Signature

X.509 Certificates
ISO introduced a set of authentication protocols

X.509: Structure for public key certificates:

Subject

Distinguished name Public key
(algorithm & key)

version serial # algorithm
Issuer

Distinguished
Name

Validity
(from-to)

Signature 
Algorithm

Signature
(signed by CA)

Issuer = Certification Authority (CA)

Name, organization, locality, state, country, etc.
50April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



X.509 certificates

To validate a certificate
Verify its signature:
1. Hash contents of certificate data
2. Decrypt CA’s signature with CA’s public key

Obtain CA’s public key (certificate) from trusted source

Certificates prevent someone from using a phony public key 
to masquerade as another person

…if you trust the CA

51April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Certification Authorities (CAs)

• How do you know the public key of the CA?
– You can get it from another certificate!
– This is called certificate chaining
– But trust has to start somewhere: you need a public key you can trust 

(probably sitting inside a certificate) – this is the root CA
• Apple’s keychain is pre-loaded with hundreds of CA certificates
• Windows stores them in the Certificate Store and makes them accessible 

via the Microsoft Management Console (mmc) 
• Android stores them in Credential Storage

• Can you trust a CA?
– Maybe…

check their reputation and read their Certification Practice Statement
– Even trustworthy ones might get hacked (e.g., VeriSign in 2010)

52April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Key revocation
• Used to invalidate certificates before expiration time

– Usually because of a compromised key
– Or policy changes (e.g., someone leaves a company)

• Certificate revocation list (CRL)
– Lists certificates that are revoked
– Only certificate issuer can revoke a certificate

• Problems
– Need to make sure that the entity issuing the revocation is authorized to do 

this
– Revocation information may not circulate quickly enough

• Dependent on dissemination mechanisms, network delays & infrastructure
• Some systems may not have been coded to process revocations

53April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Code Integrity

54April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Review: signed messages

55

Message M

Hash(M) Ea(H(M))

Encrypt with Alice’s private key 
= digital signature

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



We can sign code too

• Validate integrity of the code
– If the signature matches, then the code has not been modified

• Enables
– Distribution from untrusted sources
– Distribution over untrusted channels
– Detection of modifications by malware

• Signature = encrypted hash signed by trusted source
– Does not validate the code is good … just where it comes from

56April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Code Integrity: signed software

• Windows 7-10: Microsoft Authenticode
– SignTool command
– Hashes stored in system catalog or signed & embedded in the file
– Microsoft-tested drivers are signed

• macOS
– codesign command
– Hashes & certificate chain stored in file

• Also Android & iOS

57April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Code signing: Microsoft Authenticode
A format for signing executable code (dll, exe, cab, ocx, class files)

• Software publisher:
– Generate a public/private key pair
– Get a digital certificate: VeriSign class 3 Commercial Software Publisher’s 

certificate
– Generate a hash of the code to create a fixed-length digest
– Encrypt the hash with your private key
– Combine digest & certificate into a Signature Block
– Embed Signature Block in executable

• Microsoft SmartScreen:
– Manages reputation based on download history, popularity, anti-virus results

• Recipient:
– Call WinVerifyTrust function to validate:

• Validate certificate, decrypt digest, compare with hash of downloaded code

58April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Per-page hashing

• Integrity check when program is first loaded

• Per-page signatures – improved performance

– Check hashes for every page upon loading (demand paging)

• Per-page hashes can be disabled optionally on both 

Windows and macOS

59April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Windows code integrity checks

• Implemented as a file system driver
– Works with demand paging from executable
– Check hashes for every page as the page is loaded

• Hashes stored in system catalog or embedded in file 
along with X.509 certificate.

• Check integrity of boot process
– Kernel code must be signed or it won’t load
– Drivers shipped with Windows must be certified or contain a 

certificate from Microsoft

60April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Key exchange algorithms

61April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Notation

Z || W
– Z concatenated with W

X → Y : { Z || W } kA,B
– X sends a message to Y
– The message is the concatenation of Z & W and is encrypted by 

key kA,B, which is shared by users A & B

X → Y : { Z } kA ||  { W } kA,Y
– X sends a message to Y
– The message is a concatenation of Z encrypted using A’s key and 

W encrypted by a key shared by A and Y

r1, r2

– nonces – strings of random bits

62April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Bootstrap problem

• How to Alice & Bob communicate securely?

• Alice cannot send a key to Bob in the clear
– We assume an unsecure network

• We looked at two mechanisms:
– Diffie-Hellman key exchange
– Public key cryptography

• Let’s examine the problem some more

63April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Simple Protocol
Use a trusted third party – Trent – who has all the keys

Trent transmits a session key to Alice and Bob 

64

TrentAlice
{ Request session key to Bob } kA

TrentAlice
{ kS } kA || { kS } kB

BobAlice
{ kS } kB

BobAlice
{ m } kS

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Problems
• How does Bob know he is talking to Alice?

– Trusted third party, Trent, has all the keys
– Trent knows the request came from Alice since only he and Alice can have 

the key
– Trent can authorize Alice’s request
– Bob gets a message (session key) encrypted with his key, which only Trent 

could have created
• But Bob doesn’t know who requested the session
• Trent would have to add sender information to the message

• Vulnerable to replay attacks
– Eve records the message from Alice to Bob and later replays it
– Bob might think he’s talking to Alice, reusing the same session key

• Protocols should provide authentication & defend against replay

65April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Needham-Schroeder
Add nonces – random strings – avoid replay attacks

66

TrentAlice
{ Alice || Bob || r1 }

TrentAlice
{ Alice || Bob || r1 || kS || { Alice || kS } kB } kA

BobAlice
{ Alice || kS } kB

BobAlice
{ r2 } kS

BobAlice
{ r2 – 1 } kS

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



• Bob now tries to find out if this is a 
replay attack

• If it is, Eve cannot decipher r2

Add nonces – random strings – avoid replay attacks
• Alice knows only Bob & Trent can 

read this and get the session key.
• Bob knows it’s a request from 

Alice

Needham-Shroeder

67

TrentAlice
{ Alice || Bob || r1 }

TrentAlice
{ Alice || Bob || r1 || kS || { Alice || kS } kB } kA

BobAlice
{ Alice || kS } kB

BobAlice
{ r2 } kS

BobAlice
{ r2 – 1 } kS

Message must have been created by Trent & is 
a response to the first message (contains r1). 
Use of r1 ensures it’s not a replay attack.

This is an authentication step: 
Bob asks Alice to prove she has kS

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Denning-Sacco Modification

• We assume all keys are secret

• But suppose Eve can obtain the session key from an old message
(she worked hard, got lucky, and cracked an earlier message)

68

BobEve
{ Alice || kS } kB

BobEve
{ r2 } kS

BobEve
{ r2 – 1 } kS

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski

Bob sees this as a legitimate 
request approved by Trent. It was 
(but earlier)!

Eve the eavesdropper. She decrypted an old session key and 
is trying to get Bob to use it to think he’s talking to Alice.

Needham-Schroeder is still 
vulnerable to a certain replay attack!



Solution

• Problem: replay in the third step of the protocol
– Eve replays the message: { Alice || kS } kB

• Solution: use a time stamp T to detect replay attacks

69April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Needham-Shroeder w/Denning-Sacco mods
Add nonces – random strings – AND a timestamp

70

TrentAlice
{ Alice || Bob || r1 }

TrentAlice
{ Alice || Bob || r1 || kS || { Alice || T || kS } kB } kA

BobAlice
{ Alice || T || kS } kB

BobAlice
{ r2 } kS

BobAlice
{ r2 – 1 } kS

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Problem with timestamps

• Use of timestamps relies on synchronized clocks

– Messages may be falsely accepted or falsely rejected because of bad time

• Time synchronization becomes an attack vector

– Create fake NTP responses

– Generate fake GPS signals

71April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Otway-Rees Protocol: Session IDs

• Another way to correct the third message replay problem

• Instead of using timestamps
– Use a random integer, n, that is associated with all messages in the 

key exchange

72April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Otway-Rees Protocol
Use nonces (r1, r2) & session IDs (n)

73

BobAlice
n || Alice || Bob || {r1 || n || Alice || Bob } kA

BobTrent

BobTrent

BobAlice
n ||  { r1 || kS } kA

n || Alice || Bob || {r1 || n || Alice || Bob } kA

{r2 || n || Alice || Bob } kB

n ||  { r1 || kS } kA  ||  { r2 || kS} kB

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski

Alice sends the communication 
request to Bob – with the session ID

Bob authenticates himself & 
forwards request to Trent



Kerberos

74April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Kerberos

• Authentication service developed by MIT
– project Athena 1983-1988

• Uses a trusted third party & symmetric cryptography

• Based on Needham Schroeder with the Denning Sacco 
modification

• Passwords not sent in clear text
– assumes only the network can be compromised

75April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Kerberos

Users and services authenticate themselves to each other

To access a service:

– user presents a ticket issued by the Kerberos authentication server

– service examines the ticket to verify the identity of the user

Kerberos is a trusted third party

– Knows all (users and services) passwords

– Responsible for

• Authentication: validating an identity

• Authorization: deciding whether someone can access a service

• Key exchange: giving both parties an encryption key (securely)

76April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Kerberos

• User Alice wants to communicate with a service Bob

• Both Alice and Bob have keys

• Step 1:
– Alice authenticates with Kerberos server

• Gets session key and ticket (sealed envelope)

• Step 2:
– Alice gives Bob the ticket, which contains the session key
– Convinces Bob that she got the session key from Kerberos 

77April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Authenticate, get permission

“I’m Alice and want to talk to Bob”

Alice decrypts this:
• Gets ID of “Bob’s server”
• Gets session key & timestamp
• Knows message came from AS

eh? (Alice can’t read this!)

If Alice is allowed to talk to Bob,

generate session key, S

{ “Bob’s server”, T, kS } kA

Alice Authentication Server (AS)

{“Alice”, T, kS } kB

TICKET
sealed envelope

78

{ “Alice” || Bob }

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Send key

Alice encrypts a timestamp with 
session key

Bob decrypts envelope:
• Envelope was created by 

Kerberos on request from Alice
• Gets session key

Decrypts time stamp
• Validates time window
• Prevent replay attacks

{ “Alice”, S } kB || { T’ } kS

Alice Bob

sealed envelope

79April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Authenticate recipient of message

Alice validates timestamp

Encrypt Alice’s timestamp in return 
message

Alice Bob

{ T’+1 } kS

{Messages} kS

Alice & Bob communicate 
by encrypting data with S

80April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Kerberos key usage

• Every time a user wants to access a service
– User’s password (key) must be used to decode the message from 

Kerberos

• We can avoid this by caching the password in a file
– Not a good idea

• Another way: create a temporary password
– We can cache this temporary password
– Similar to a session key for Kerberos – to get access to other services
– Split Kerberos server into

Authentication Server + Ticket Granting Server

81April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Ticket Granting Server (TGS)

• TGS works like a temporary ID

• User first requests access to the TGS
– Contact Kerberos Authentication Server

• Knows all users & their secret keys
• User enters a password to do this
• Gets back a ticket & session key to the TGS – these can be cached

• To access any service
– Send a request to the TGS – encrypted with the TGS session key

along with the ticket for the TGS
– The ticket tells the TGS what your session key is
– It responds with a session key & ticket for that service

82April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Using Kerberos
$ kinit

Password: enter password

ask AS for permission (session key) to access TGS

Alice gets:

Compute key (A) from password to decrypt session key S 
and get TGS ID.

You now have a ticket to access the Ticket Granting Service

{“TGS”, S } kA

{“Alice”, S } kTGS

83

TGS Ticket

Session key

{ T } kS Encrypted timestamp

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Using Kerberos
$ rlogin somehost
rlogin uses the TGS Ticket to request a ticket for the rlogin service
on somehost

{“rlogin@somehost”, kS’} kS

{“Alice”, kS’} kR

{“Alice”, kS} kTGS, {T} kS

rlogin TGS

S’ = session key
for rlogin

ticket for rlogin server
on somehost

Alice sends session key, S, to TGS 

Alice receives session key for rlogin service & ticket to pass to rlogin service

84April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Public Key Exchange

We did this

• Alice’s & Bob’s public keys known to all: eA, eB

• Alice & Bob’s private keys are known only to the owner:
da, db

• Simple protocol to send symmetric session key: kS

85

BobAlice
{ kS } eB

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



Problem 

• Vulnerable to forgery or replay

• Public keys are known to anyone
– Bob has no assurance that Alice sent the message

• Fix: have Alice sign the session key

86

BobAlice
{ { kS } da } eB

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski

Key kS encrypted with Alice’s private key 
Entire message encrypted with Alice’s public key 



Problem #2 

• How do we know we have the right public keys?

• Send a certificate so Bob can verify it

87

BobAlice

{ { kS } da } eB, X

April 10, 2019 CS 419 © 2019 Paul Krzyzanowski

Add Alice’s certificate, which contains Alice’s 

verifiable public key



Cryptographic toolbox

• Symmetric encryption

• Public key encryption

• Hash functions

• Random number generators

88April 10, 2019 CS 419 © 2019 Paul Krzyzanowski



The End

89April 10, 2019 CS 419 © 2019 Paul Krzyzanowski


