
Computer Security 4/12/19

Paul Krzyzanowski 1

Computer Security
09. Authentication

Paul Krzyzanowski

Rutgers University

Spring 2019

1April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Authentication

• Identification: who are you?
• Authentication: prove it
• Authorization: you can do it

• Protocols such as Kerberos combine all three

2April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Authentication

Three factors:

–Ownership: something you have
• Key, card
• Can be stolen

–Knowledge: something you know
• Passwords, PINs
• Can be guessed, shared, stolen

– Inherence: something you are
• Biometrics
• Usually needs hardware, can be copied (sometimes)
• Once copied, you’re stuck

3April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Multi-Factor Authentication

Factors may be combined
– ATM machine: 2-factor authentication

• ATM card something you have
• PIN something you know

– Password + code delivered via SMS: 2-factor authentication
• Password something you know
• Code validates that you possess your phone

Two passwords ≠ Two-factor authentication
The factors must be different

4April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Authentication: PAP

Password Authentication Protocol

login, password

OKclient server

• Unencrypted, reusable passwords

• Insecure on an open network
• Also, the password file must be protected from open access

– But administrators can still see everyone’s passwords
What if you use the same password on Facebook as on Amazon?

5

name:password
database

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Passwords are bad
• Human readable & easy to guess

– People usually pick really bad passwords

• Easy to forget

• Usually short

• Static ... reused over & over
– Security is as strong as the weakest link
– If a user name (or email) & password is stolen from one server, it might be

usable on others

• Replayable
– If someone can grab it or see it, they can play it back

Recent large-scale leaks of password from servers have shown that
people DO NOT pick good passwords

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski 6

Computer Security 4/12/19

Paul Krzyzanowski 2

Common Passwords
Adobe security breach (November 2013)

– 152 million Adobe customer records … with encrypted passwords
– Adobe encrypted passwords with a symmetric key algorithm
– … and used the same key to encrypt every password!

7

Frequency Password

1 1,911,938 123456
2 446,162 123456789
3 345,834 password
4 211,659 adobe123
5 201,580 12345678
6 130,832 qwerty
7 124,253 1234567
8 113,884 111111
9 83,411 photoshop

10 82,694 123123
11 76,910 1234567890
12 76,186 000000
13 70,791 abc123

Frequency Password

14 61,453 1234
15 56,744 adobe1
16 54,651 macromedia
17 48,850 azerty
18 47,142 iloveyou
19 44,281 aaaaaa
20 43,670 654321
21 43,497 12345
22 37,407 666666
23 35,325 sunshine
24 34,963 123321
25 33,452 letmein
26 32,549 monkey

Top 26 Adobe Passwords

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

It's not getting better

Past seven years of top passwords from SplashData's list

Rank 2012 2013 2014 2015 2016 2017 2018

1 password 123456 123456 123456 123456 123456 123456

2 123456 password password password password password password

3 12345678 12345678 12345 12345678 12345 12345678 123456789

4 abc123 qwerty 12345678 qwerty 12345678 qwerty 12345678

5 qwerty abc123 qwerty 12345 football 12345 12345

6 monkey 123456789 123456789 123456789 qwerty 123456789 111111

7 letmein 111111 1234 football 1234567890 letmein 1234567

8 dragon 1234567 baseball 1234 1234567 1234567 sunshine

https://en.wikipedia.org/wiki/List_of_the_most_common_passwords

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski 8

Leaks have not convinced people to use good passwords

PAP: Reusable passwords

Problem #1: Open access to the password file

What if the password file isn’t sufficiently protected and an intruder gets
hold of it? All passwords are now compromised!

Even if a trusted admin sees your password, this might also be your

password on other systems.

How about encrypting the passwords?

• Where would you store the key?

• Adobe did that

– 2013 Adobe security breach leaked 152 million Adobe customer records

– Adobe used encrypted passwords

• But the passwords were all encrypted with the same key
• If the attackers steal the key, they get the passwords

9April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

PAP: Reusable passwords
Solution:

Store a hash of the password in a file
– Given a file, you don’t get the passwords
– Have to resort to a dictionary or brute-force attack
– Example, passwords hashed with SHA-512 hashes (SHA-2)

10April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

What is a dictionary attack?

• Suppose you got access to a list of hashed passwords
• Brute-force, exhaustive search: try every combination

– Letters (A-Z, a-z), numbers (0-9), symbols (!@#$%...)
– Assume 30 symbols + 52 letters + 10 digits = 92 characters

– Test all passwords up to length 8
– Combinations = 928 + 927 + 926 + 925 + 924 + 923 + 922 + 921 = 5.189 × 1015

– If we test 1 billion passwords per second: ≈ 60 days

• But some passwords are more likely than others
– 1,991,938 Adobe customers used a password = “123456”

– 345,834 users used a password = “password”

• Dictionary attack
– Test lists of common passwords, dictionary words, names
– Add common substitutions, prefixes, and suffixes

11

Easiest to do if the attacker steals a hashed password file –
so we read-protect the hashed passwords to make it harder to get them

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

How to speed up a dictionary attack

Create a table of precomputed hashes
Now we just search a table for the hash to find the password

12April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

SHA-256 Hash password
8d969eef6ecad3c29a3a629280e686cf0c3f5d5a86aff3ca12020c923adc6c92 123456
5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8 password
ef797c8118f02dfb649607dd5d3f8c7623048c9c063d532cc95c5ed7a898a64f 12345678
1c8bfe8f801d79745c4631d09fff36c82aa37fc4cce4fc946683d7b336b63032 letmein

… …

Computer Security 4/12/19

Paul Krzyzanowski 3

Salt: defeating dictionary attacks

Salt = random string (typically up to 16 characters)
– Concatenated with the password
– Stored with the password file (it’s not secret)

"am$7b22QL" + "password"

– Even if you know the salt, you cannot use precomputed hashes to
search for a password
(because the salt is prefixed to the password string)

You will not have a precomputed hash(“am$7b22QLpassword”)

13

Example: SHA-256 hash of “password”, salt = “am$7b22QL”=
hash("am$7b22QLpassword")=
7a87d1d5118873b1c16d30176936e1920f33b91d8be1517d5cc295dfd0268906

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Longer passwords

• English text has an entropy of about 1.2-1.5 bits per character

• Random text has an entropy ≈ log2(1/95) ≈ 6.6 bits/character

14

Assume 95 printable characters

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Defenses
• Use longer passwords

– But can you trust users to pick ones with enough entropy?

• Rate-limit guesses
– Add timeouts after an incorrect password

• Linux waits about 3 secs – and terminates the login program after 5 tries

• Lock out the account after N bad guesses
– But this makes you vulnerable to denial-of-service attacks

• Use a slow algorithm to make guessing slow

15April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

People forget passwords

• Especially seldom-used ones

• How do we handle that?

• Email them?

– Common solution

– Requires that the server be able to get the password (can’t store a hash)

– What if someone reads your email?

• Reset them?

– How do you authenticate the requester?

– Usually send reset link to email address created at registration

– But – what if someone reads your mail? …or you no longer have that address?

• Provide hints?

• Write them down?

– OK if the threat model is electronic only

16April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Reusable passwords in multiple places
• People often use the same password in different places

• If one site is compromised, the password can be used elsewhere
– People often try to use the same email address and/or user name

• This is the root of phishing attacks

• Password managers
– Software that stores passwords in an encrypted file
– Do you trust the protection? The synchronization capabilities?
– Can malware get to the database?
– In general, these are good

• Way better than storing passwords in a file
• Encourages having unique passwords per site
• Password managers may have the ability to recognize web sites

& defend against phishing

17April 12, 2019 CS 419 © 2019 Paul Krzyzanowski April 12, 2019 CS 419 © 2019 Paul Krzyzanowski 18

Computer Security 4/12/19

Paul Krzyzanowski 4

PAP: Reusable passwords

Problem #2: Network sniffing or shoulder surfing

Passwords can be stolen by observing a user’s session in person or over
a network:

– Snoop on telnet, ftp, rlogin, rsh sessions

– Trojan horse

– Social engineering

– Key logger, camera, physical proximity

– Brute-force or dictionary attacks

Solutions:

(1) Use an encrypted communication channel

(2) Use one-time passwords

(3) Use multi-factor authentication, so a password alone is not sufficient

19April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

One-time passwords

Use a different password each time
– If an intruder captures the transaction, it won’t work next time

Three forms
1. Sequence-based: password = f(previous password)

2. Time-based: password = f(time, secret)

3. Challenge-based: f(challenge, secret)

20April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

S/key authentication
• One-time password scheme

• Produces a limited number of authentication sessions

• Relies on one-way functions

21April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Authenticate Alice for 100 logins
• pick random number, R

• using a one-way function, f(x):

x1 = f(R)
x2 = f(x1) = f(f(R))
x3 = f(x2) = f(f(f(R)))

… …
x100 = f(x99) = f(…f(f(f(R)))…)

• then compute:
x101 = f(x100) = f(…f(f(f(R)))…)

S/key authentication

Give this list
to Alice

22April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

S/key authentication

Authenticate Alice for 100 logins

Store x101 in a password file or database record
associated with Alice

alice: x101

23April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

S/key authentication

Alice presents the last number on her list:
Alice to host: { “alice”, x100 }

Host computes f(x100) and compares it with the value in
the database

if (x100 provided by alice) = passwd(“alice”)
replace x101 in db with x100 provided by alice
return success

else
fail

next time: Alice presents x99

If someone sees x100 there is no way to generate x99.

24April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Computer Security 4/12/19

Paul Krzyzanowski 5

Authentication: CHAP

Challenge-Handshake Authentication Protocol

challenge

hash(challenge, secret)

OK

client server

Has shared secret Has shared secret

The challenge is a nonce (random bits).

We create a hash of the nonce and the secret.

An intruder does not have the secret and cannot do this!

25

= nonce

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

CHAP authentication

Alice network host

“alice” “alice” look up alice’s
key, K

generate random
challenge number CC

R ’ = f(K,C)

R ’ R = f(K, C)

R = R ’ ?“welcome”

an eavesdropper does not see K

26April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Time-Based Authentication

Time-based One-time Password (TOTP) algorithm

• Both sides share a secret key
– Sometimes sent via a QR code so the user can scan it into the TOTP app

• User runs TOTP function to generate a one-time password

one_time_password = hash(secret_key, time)

• User logs in with:
– Name, password, and one_time_password

• Service generates the same password
one_time_password = hash(secret_key, time)

• Typically 30-second granularity for time

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski 28

Time-based One-time Passwords

Used by

– Microsoft Two-step Verification

– Google Authenticator

– Facebook Code Generator

– Amazon Web Services

– Bitbucket

– Dropbox

– Evernote

– Zoho

– Wordpress

– 1Password

– Many others…

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski 29

RSA SecurID card
Username:

paul
Password:

1234032848

PIN passcode from card+

Something you know
Something you have

1. Enter PIN
2. Press ◊
3. Card computes password
4. Read password & enter Password:

354982

Passcode changes every 60 seconds

30April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

SecurID card

Same principle as Time-based One-Time Passwords

• Proprietary device from RSA

– SASL mechanism: RFC 2808

• Two-factor authentication based on:

– Shared secret key (seed)

• stored on authentication card

– Shared personal ID – PIN

• known by user

31

Something you have

Something you know

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Computer Security 4/12/19

Paul Krzyzanowski 6

Yubikey: Yunico One Time Password (OTP)

OTP = f(hardware_id, passcode, counter)
Passcode generated on the device from session counters, previous
values, other sources

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

34

Alice Mike Bob

Hi Bob, I’m Alice

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Man-in-the-Middle Attacks

Password systems are vulnerable to man-in-the-middle attacks

– Attacker acts as the server

35

Alice Mike Bob

Hi Bob, I’m Alice Hi Bob, I’m Alice

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Man-in-the-Middle Attacks

Password systems are vulnerable to man-in-the-middle attacks

– Attacker acts as the server

36

Alice Mike Bob

What’s your password? What’s your password?

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Man-in-the-Middle Attacks

Password systems are vulnerable to man-in-the-middle attacks

– Attacker acts as the server

37

Alice Mike Bob

It’s 123456 It’s 123456

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Man-in-the-Middle Attacks

Password systems are vulnerable to man-in-the-middle attacks

– Attacker acts as the server

38

Alice Mike Bob

So long, sucker! Welcome, Alice!

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Computer Security 4/12/19

Paul Krzyzanowski 7

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

39

Alice Mike Bob

Huh? Download my files

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Guarding against man-in-the-middle attacks

• Use a covert communication channel
– The intruder won’t have the key
– Can’t see the contents of any messages
– But you can’t send the key over that channel!

• Use signed messages for all communication
– Signed message = { message, encrypted hash of message }
– Both parties can reject unauthenticated messages
– The intruder cannot modify the messages

• Signatures will fail (they will need to know how to encrypt the hash)

• But watch out for replay attacks!
– May need to use session numbers or timestamps

40April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

Cryptographic Authentication

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski 41

Basic concept: prove you have the key

You can’t just ask, so ask the other side to prove they can

encrypt or decrypt a message with the key

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski 42

Create a nonce, n
(random bunch of bits)

n

Encrypt the nonce with
the shared key, kEk(n)

Validate the result:

Dk(Ek(n)) ≟ k

This assumes a pre-shared key.

After that, Alice can encrypt & send a session key.

Alice Bob

Basic concept: mutual authentication

• Alice had Bob prove he has the key
• Bob may want to validate Alice as well

• Bob will do the same thing
– Have Alice prove she has the key

• Pre-shared key: Alice encrypts the nonce with the key
• Public key: Alice encrypts the nonce with her private key

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski 43

Combined authentication & key exchange

• We looked at this earlier
• Basic idea with symmetric cryptography:

Use a trusted third party (Trent) that has all the keys
– Alice wants to talk to Bob: she asks Trent

• Trent generates a session key encrypted for Alice
• Trent encrypts the same key for Bob (ticket)

– Authentication is implicit:
• If Alice can decrypt the session key, she proved she knows her key
• If Alice can decrypt the session key, he proved he knows his key

– Weaknesses that we had to fix:
• Replay attacks – add nonces – Needham-Schroeder protocol
• Replay attacks re-using a cracked old session key

– Add timestamps (Denning-Sacco protocol, Kerberos)

– Add session IDs at each step (Otway-Rees Protocol)

April 12, 2019 CS 419 © 2019 Paul Krzyzanowski 44

Computer Security 4/12/19

Paul Krzyzanowski 8

The End

45April 12, 2019 CS 419 © 2019 Paul Krzyzanowski

