
CS 419 4/15/18

© 2017 Paul Krzyzanowski 1

Computer Security
14. Web Security

Paul Krzyzanowski

Rutgers University

Spring 2018

1April 15, 2018 CS 419 © 2018 Paul Krzyzanowski

Original Browser

• Static content on clients

• Servers were responsible for dynamic parts

• Security attacks were focused on servers
– Malformed URLs, buffer overflows, root paths, unicode attacks

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 2

Today’s Browsers
Complex!

• JavaScript – allows code execution

• Document Object Model (DOM) – change appearance of page

• XMLHttpRequest (AJAX) – asynchronously fetch content

• WebSockets – open interactive communication session between
JavaScript on a browser and a server

• Multimedia support - <audio>, <video>, <track>
– MediaStream recording (audio and video), speech recognition & synthesis

• Geolocation

• NaCl – run native code inside a browser (sandboxed)

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 3

Complexity creates a huge threat surface
• More features → more bugs

• Browsers experienced a rapid introduction of features

• Browser vendors don’t necessarily conform to all specs

• Check out
quirksmode.org

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 4

Multiple sources
• Most desktop & mobile apps come from one place

– They may use external libraries, but those are linked in and tested

• Web apps usually have components from different places

• E.g., www.cnn.com has
– Fonts from cdn.cnn.com
– Images from turner.com, outbrain.com, bleacherreport.net, chartbeat.net
– Scripts from amazon-adsystem.com, rubiconproject.com, bing.com, krxd.net,

gigya.com, krxd.net, livefyre.com, fyre.co, optimizely.com, facebook.net,
cnn.com, criteo.com, outbrain.com, sharethrough.com, doubleclick.net,
googletagservices.com, ugdturner.com

– XMLHttpRequests from zone-manager.izi, optimizely.com, chartbeat.com,
cnn.io, rubiconproject.com

– Other content from scorecardresearch.com, imnworldwide.com,
facebook.com

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 5

What should code on a page have access to?

• Can analytics code access JavaScript state from a script from
jQuery.com on the same page?
– Scripts are from different places … but the page author selected them

• Can analytics scripts interact with event handlers?

• How about embedded frames?

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 6

CS 419 4/15/18

© 2017 Paul Krzyzanowski 2

Same-origin Policy
Web application security model: same-origin policy

A browser permits scripts in one page to access data
in a second page only if both pages have the same origin

Origin = { URI scheme, hostname, port number }

• Same origin
– http://www.poopybrain.com/419/test.html
– http://www.poopybrain.com/index.html

• Different origin
– https://www.poopybrain.com/index.html – different URI scheme (https)
– http://www.poopybrain.com:8080/index.html – different port
– http://poopybrain.com/index.html – different host

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 7

Ideas behind the same-origin policy

• Each origin has client-side resources
– Cookies: simple way to implement state

• Browser sends cookies associated with the origin

– DOM storage: key-value storage per origin
– JavaScript namespace: functions & variables
– DOM tree: JavaScript version of the HTML structure

• Each frame is assigned the origin of its URL

• JavaScript code executes with the authority of its frame’s origin
– If cnn.com loads JavaScript from jQuery.com, the script runs with the authority

of cnn.com

• Passive content (CSS files, images) has no authority
– It doesn’t (and shouldn’t) contain executable code

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 8

Can two different frames communicate?
• Generally, no – they’re isolated if they’re not the same origin

• But postMessage() allows two independent frames to communicate

• Both sides have to opt in

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 9

Passive content has no authority
Makes sense … but why does it matter?

Usually no … but …

MIME sniffing attack
– Chance of security problems if browser parses object incorrectly
– Old versions of IE would examine leading bytes of object to fix wrong file

types provided by the user
– Suppose a page contained passive content from an untrusted site
– Attacker could add HTML & JavaScript to the content

• IE would reclassify the content

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 10

Cross-origin weirdness
• Images

– A frame can load images from anywhere
– Same-origin policy does not allow it to inspect the image
– However, it can infer the size of the rendered image

• CSS
– A frame can embed CSS from any origin but cannot inspect the text inside the

file
– But:

It can discover what the CSS does by creating DOM nodes and seeing how
styling changes

• JavaScript
– A frame can fetch JavaScript and execute it … but not inspect it
– But … you can call myfunction.toString() to get the source
– Or … just download the source via a curl command and look at it

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 11

Cross-Origin Resource Sharing (CORS)

• A page can contain content from multiple origins
– Images, CSS, scripts, iframes, videos

• XMLHttpRequests are not permitted
– CORS – allows servers to define allowable origins

– Example, a server at service.example.com may respond with
Access-Control-Allow-Origin: http://www.example.com

– Stating that it will allow treating www.example.com as the same origin

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 12

CS 419 4/15/18

© 2017 Paul Krzyzanowski 3

Cookies

• Cookies are identified with a domain & a path
pk.org/419

All paths in the domain have access to the cookie

• Whoever sets the cookie chooses what domain & paths looks like

– JavaScript can set
document.cookie = “username=paul”;

– Server can set cookies by sending them in the HTTP header
Set-Cookie: username=paul

When a browser generates an HTTP request
it sends all matching cookies

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 13

Cookies

• Cookies are often used to track server sessions
– If malicious code can modify the cookie or give it to someone else, an

attacker may be able to
• View your shopping cart
• Get or use your login credentials
• Have your web documents or email get stored into a different account

• HttpOnly flag: disallows scripts from accessing the cookie
– Sent in a Set-Cookie HTTP response header

• Secure flag: send the cookie only over https
Set-Cookie: username=paul; path=/; HttpOnly; Secure

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 14

Cross-Site Request Forgery (XSRF)

• A browser sends cookies for a site along with a request

• If an attacker gets a user to access a site
… the user’s cookies will be sent with that request

• If the cookies contain the user’s identity or session state
– The attacker can create actions on behalf of the user

• Planting the link
– Forums or spam

http://mybank.com/?action=transfer&amount=100000&to=attacker_account

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 15

Cross-Site Request Forgery (XSRF)

Defenses
– Validate the referrer header at the server

– Require unique tokens per request

• Add randomness to the URL that attackers will not be able to guess

• E.g., legitimate server can set tokens via hidden fields instead of cookies

– Default-deny browser policy for cross-site requests (but may interfere with

legitimate uses)

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 16

Clickjacking

• Attacker overlays an image to trick a user to clicking a button or link

• User sees this

• Not realizing there’s an invisible frame over the image

• Clicking there could generate a Facebook like
… or download malware

… or change security settings for the Flash plugin

• Defense

– JavaScript in the legitimate code to check that it’s the top layer

window.self == window.top
– Set X-Frame-Options to not allow frames from other domains

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 17

Screen sharing attack

• HTML5 added a screen sharing API

• Normally: no cross-origin communication from client to server

• This is violated with the screen sharing API
– If a frame is granted permission to take a screenshot, it can get a screenshot

of the entire display (monitor, windows, browser)
– Can also get screenshots within the user’s browser without consent

• User might not be aware of the scope of screen sharing

http://dl.acm.org/citation.cfm?id=2650789

http://mews.sv.cmu.edu/papers/oakland-14.pdf

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 18

CS 419 4/15/18

© 2017 Paul Krzyzanowski 4

Input sanitization

• Remember SQL injection attacks?

• Any user input must be parsed carefully

<script> var x = “untrusted_data”; </script>

• Attacker can set untrusted_data to something like:

hi”; </script> <h1> Hey, some text! </h1> <script> malicious code… </script>

• Sanitization should be used with any user input that may be part of
– HTML
– URL
– JavaScript
– CSS

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 19

Shellshock attack

• Discovered in 2014 …. Existed since 1989!

• Privilege escalation vulnerability in bash
– Function export feature is buggy, allowing functions defined in one instance of

bash to be available to other instances via environment variable lists

• Web servers using CGI scripts (Common Gateway Interface)
– HTTP headers get converted to environment variables
– Command gets executed by the shell via system()

• Bogus function definition in bash
– Bash gets confused while parsing function definitions and executes the

second part (“echo vulnerable”), which could invoke any operation

env x='() { :;}; echo vulnerable' bash -c "echo this is a test"

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 20

Cross-Site Scripting (XSS)

Code injection attack

• Allows attacker to execute JavaScript in a user’s browser

• Exploit vulnerability in a website the victim visits

– Possible if the website includes user input in its pages

– Example: user content in forums (feedback, postings)

• What’s the harm?

– Access cookies related to that website

– Hijack a session

– Create arbitrary HTTP requests with arbitrary content via XMLHtttpRequest

– Make arbitrary modifications to the HTML document by modifying the DOM

– Install keyloggers

– Download malware – or run JavaScript ransomware

– Try phishing by manipulating the DOM and adding a fake login page

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 21

Types of XSS attacks
• Reflected XSS

– Malicious code is not stored anywhere
• It is returned as part of the HTTP response
• Only impacts users who open a malicious link or third-party web page
• Attack string is part of the link

– Web application passes unvalidated input back to the client
• The script is in the link and is returned in its original form & executed

• Persistent XSS
– Website stores user input and serves it back to other users at a later stage
– Victims do not have to click on a malicious link to run the payload
– Example: forum comments

www.mysite.com/login.asp?user=<script>malicious_code(…) </script>

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 22

XSS Defense

• One of the problems in preventing XSS is character encoding

– Filters might check for ”<script>” but not ”%3cscript%3e”

• Key defense is sanitizing ALL user input
– E.g., Django templates: hello, {{name}}

• Use a less-expressive markup language for user input
– E.g., markdown

• Privilege separation

– Use a different domain for untrusted content

• E.g., googleusercontent.com for static and semi-static content

• Limits damage to main domain

• Content Security Policy (CSP)

– Designed to prevent XSS & clickjacking

– Allows website owners to identify approved origins of content & types of content

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 23

SQL Injection & pathnames
We examined these earlier

SQL Injection

• Many web sites use a back-end database

• Links contain queries mixed with user input

query = “select * from table where user=” + username

Pathnames

• Escape the HTML directory

//mysite/images/../../../etc/shadow

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 24

CS 419 4/15/18

© 2017 Paul Krzyzanowski 5

GIFAR attack

• Java applets are sent as JAR files
– This is just a zip format

– Header is stored at the end of the file

• GIF files are images
– Header is stored at the beginning of the file

• We can combine the two files: gif + jar

• GIFAR attack
– Submit a GIFAR file (myimage.gif) to a site that only allows image uploads

– Use XSS to inject <applet archive:”myimage.gif”>

– Code will run in the context of the server
• Attacker gets to run with the authority of the origin (server)

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 25

Network addresses
• A frame can send http & https requests to hosts that match the origin

• The security of same origin is tied to the security of DNS
– Recall the DNS rebinding attack

• Register attacker.com; get user to visit attacker.com
• Browser generates request for attacker.com
• DNS response contains a really short TTL
• After the first access, attacker reconfigures the DNS server

– Binds attacker.com to the victim’s IP address

– Web site can now fetch a new object via AJAX
• Web browser thinks request goes to an external site
• Really, it goes to a server in the victim’s network

– The attacker is now accessing data within the victim’s servers and can send
data back to an attacker’s site

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 26

Network addresses
• Solution – no foolproof solutions

– Don’t allow DNS resolutions to return internal addresses
– Force longer TTL

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 27

The situation is not good
• HTML, JavaScript, and CSS continue to evolve

• All have become incredibly complex

• Web apps themselves can be incredibly complex, hence buggy

• Web browsers are forgiving
– You don’t see errors
– They try to correct syntax problems and guess what the author meant
– Usually, something gets rendered

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 28

The end

April 15, 2018 CS 419 © 2018 Paul Krzyzanowski 29

