
Recitation:
Web Security

April 11th, 2018
Aditya Geria

Security Model

Prevention

DetectionRecovery

Browser Security
● Same Origin Policy: Permit scripts in one page to access data in a second

page only if both pages have the same origin
○ Origin = { URI scheme, hostname, port number }

● Frames should not be able to communicate if they’re not in the same
origin

● Cross-Origin-Resource-Sharing (CORS): A page can contain content from
multiple origins

○ Can allow you to define “acceptable” domains under the same-origin policy

Cookies and XSRF
● Websites use cookies to track client progress through a website

● Enables XSRF: “Cross Site Request Forgery” Attacks on weak websites

○ Planting a link or forging a cookie in order to allow access to a client’s browsing session

○ Example: http://mybank.com/?action=transfer&amount=100000&to=attacker_account

○ Tom Scott on XSRF: https://www.youtube.com/watch?v=vRBihr41JTo

● Defenses: Referrer header in a cookie or require unique tokens per session

○ JWT (JSON Web Token) https://jwt.io/introduction/

○ OAuth2

http://mybank.com/?action=transfer&amount=100000&to=attacker_account
https://www.youtube.com/watch?v=vRBihr41JTo
https://jwt.io/introduction/

JSON Web Tokens (JWT)
“self-contained way for securely transmitting information between parties as a JSON object. This

information can be verified and trusted because it is digitally signed. JWTs can be signed using a secret
(with the HMAC algorithm) or a public/private key pair using RSA.”

“Signed tokens can verify the integrity of the claims contained within it, while encrypted tokens hide those
claims from other parties. When tokens are signed using public/private key pairs, the signature also

certifies that only the party holding the private key is the one that signed it.”

https://jwt.io/introduction/

OAuth 2.0

Service
you’re
trying to
use

You

A
trusted
3rd party
like
Google

OAuth Token

XSS - Cross Site Scripting
● Code injection attack that allows attacker to execute JavaScript in a user’s browser

○ Exploit vulnerability in a website the attacker visits

○ Possible if the website includes user input in its pages

● Example: a weak chatting system (GAH)

● Possible damage: Hijack a session, Create arbitrary HTTP requests with arbitrary

content via XMLHtttpRequest, Make arbitrary DOM modifications, Install keyloggers,

Download malware/miners, run JavaScript ransomware, try phishing by manipulating

the DOM and adding a fake login page.

XSS Defenses

Sanitize ALL user input!!

● OWASP:

https://www.owasp.org/index.php/Injection_Pr

evention_Cheat_Sheet_in_Java

● XSS Defense Cheat Sheet:

https://www.owasp.org/index.php/XSS_(Cross

_Site_Scripting)_Prevention_Cheat_Sheet

● Content Security Policy (CSP): Allows website

owners to identify approved origins of content

& types of content

● String safe = Jsoup.clean(unsafe,

Whitelist.basic()); //java

https://www.owasp.org/index.php/Injection_Prevention_Cheat_Sheet_in_Java
https://www.owasp.org/index.php/Injection_Prevention_Cheat_Sheet_in_Java
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

SQL Injections
● Similar to XSS, but inject SQL Code to mess with a database

● Occurs when volatile data is passed in as part of a query

○ statement = "SELECT * FROM users WHERE name = '" + userName + "';"

● Or when the Query can be exposed via a URL

○ https://mywebsite.com/important?query=select%20*%20from%20some_table%
20where…

● Blind SQL Injection: Results of a query are not visible to the attacker

● Tom Scott on SQL Injections: https://www.youtube.com/watch?v=_jKylhJtPmI

https://mywebsite.com/important?query=select%20*%20from%20some_table%20where%E2%80%A6
https://mywebsite.com/important?query=select%20*%20from%20some_table%20where%E2%80%A6
https://www.youtube.com/watch?v=_jKylhJtPmI

SQL Injection Defenses
Sanitize your input!!!!

● A query should not be a part of the URL. If it is, use Database permissions to disallow any queries

except for read queries.

● Escaping input:

○ Every occurrence of a single quote in a parameter must be replaced by two single quotes to

form a valid SQL string literal

○ PHP uses mysqli_real_escape_string();

● Parameterized Values (placeholder values and prepared statements) : ‘?’

○ Resilient against SQL injection because values which are transmitted later using a different
protocol are not compiled.

○ If the statement template is not derived from external input, SQL injection cannot occur.

Prepared statements

Escaping
(PHP)

Database
permissions on
MS SQL Server

Assignment Overview

The End

