
CS 417:
the one-hour study guide for exam 1
Disclaimer: This study guide attempts to touch upon the most important topics that may be covered on
the exam but does not claim to necessarily cover everything that one needs to know for the exam. Finally,
don’t take the one hour time window in the title literally.

Introduction

Why are distributed systems more interesting now than they may have been one or two dozen
years ago? A number of advances in computing technology had a profound effect on
distributed systems. Network connectivity increased by a factor of a thousand since the 1980s.
Connectivity within a local area network (LAN) moved from shared to switched networking,
allowing the network to scale without increasing congestion. On the wide area, Internet access
has become available to the population at large, not just to researchers on Department of
Defense projects. Processor performance, system memory, and disk capacity has also increased
by more than a thousandfold over the past couple of decades.

Even though these improvements make it easier to store, process, and move data between
systems, what are the motivations for distributing computing? There are several reasons.
Performance does not scale linearly with an increase in price with a single computer; with a
collection of computers this scaling may be possible. Secondly, distributing systems makes
sense in certain environments: databases may reside in different locations than the user, for
example. Thirdly, we may need to interact with other people or remote data that are
geographically dispersed.

Taxonomy

One way of classifying system architectures is via Flynn’s taxonomy, proposed by Michael J.
Flynn in 1972. He categorized machines based on the number of instruction streams and the
number of data streams. SISD (single instruction stream, single data stream) refers to
conventional single processor systems. SIMD (single instruction stream, multiple data streams)
refers to single processor machines where each instruction may process a collection of data.
Vector and array processors fall into this category. This includes graphics processors, cell
processors, Intel’s SSE3 instructions in the Pentium , and the PowerPC’s AltiVec instructions.
Finally, MIMD (multiple instruction streams, multiple data streams) refer to any machines with
multiple processors, where each processor operates on its own stream of data.

MIMD can be further categorized by identifying whether the system has a shared memory
space or not. Systems with shared memory are known as multiprocessor systems. Examples are
conventional PC with multi processors on a single system bus (e.g., a dual-processor Pentium
). An architecture where multiple identical processors communicate with a single shared
memory is called SMP, or symmetric multiprocessing. Systems without a shared memory are

© 2005-2009 Paul Krzyzanowski. All rights reserved. Last updated: February 18, 2009

collections of separate machines, each with its own memory. They have to rely on a network to
communicate and are sometimes referred to as multicomputers.

Cache coherence

On a bus-based multiprocessor system, all the processors, system memory, and peripherals are
connected to a shared system bus. Only one device can access the bus at any time. Since
processors need to access memory continuously, there is constant contention for the system
bus. Cache memory alleviates this, as it is a small amount of memory that is local to each
processor with the expectation is that most programs exhibit a certain amount of locality,
allowing most memory references to be satisfied from the cache.

The problem with using cached data is that if a processor modifies a memory location, it will
only modify the local copy in the cache. Other processors will read the previous value. This is
unacceptable but can be remedied by having write operations pass through to the system bus
so that main memory can be updated. This is known as write-through. There is a performance
penalty for doing this, but read operations usually far outnumber write operations. The second
problem is that, even if a processor updates the data in main memory, another processor may
still access its own cached data, which is now obsolete. This can be remedied by having each
processor’s cache controller monitor write operations on the system bus and detect whether
others are modifying any cached addresses. This operation is known as snooping. Together,
write-through and snooping comprise a snoopy cache. Virtually all multiprocessor systems
employ a snoopy cache to ensure cache memory coherence.

Improving scalability

Because of its shared system bus, bus-based SMP systems face increasing bus congestion as the
number of CPUs in the system increases. Beyond eight or so processors, the effects of this
congestion can become quite severe, rendering the architecture impractical for highly parallel
systems.

From a performance point of view, a crossbar switch is an ideal solution. It allows the switching
of any processor to any chunk of memory without interfering with the traffic from any other
processor accessing any other chunk of memory. With a sufficiently large crossbar switch,
memory can be divided into a lot of chunks and delays will only occur when two processors
need to access the same region of memory at the same time.

The problem with a crossbar switch is that it is expensive, particularly in the large sizes needed
to support a large number of processors and a fine-grained partitioning of memory. An
attempt to alleviate the cost of a crossbar switch is to decrease the aggregate number of
switching elements (crosspoint switches) by increasing the number of switching stages. This is
known as an omega network. Unfortunately, this slows down all memory accesses, as each
request to memory has to pass through a number of crosspoint switches. A compromise
solution is a non-uniform memory architecture, or NUMA. This architecture associates part of
the global system memory with each processor. Every processor is able to access a portion of

CS 417: the one hour study guide for exam 1

© 2005-2009 Paul Krzyzanowski. All rights reserved. - 2 - Last updated: February 18, 2009

the system memory at high speed through a local bus. The remaining memory is accessible
through a shared (but slower) backplane. The idea is that a program may be loaded in such a
way that most memory references are from local memory (and fast). The trick is for the
operating system to place programs in memory and assign them to the correct processor.

AMD's HyperTransport technology (HTT) in its 64-bit Opteron CPUs is an example of NUMA
support in current architectures. Each CPU has its own bank of DDR memory and
communicates with inter-processor memory over the HTT link. Intel announced support for
NUMA in 2007 with their Nehalem and Tukwila processors. These machines can be connected
to shared memory via a Quick Path Interconnect (QPI).

In operating systems, a traditional scheduler, such as the one in the 2.4 Linux kernel, used a
single run queue. A multi-queue scheduler with a separate run queue per processor was
developed in the 2.5 kernel to support the NUMA model (2002). Microsoft added NUMA
support in their Windows 2003 Server. The system attempts to improve memory access
performance by scheduling threads on processors that are in the same node as the memory
being used. It also tries to allocate memory within the same node if possible.

Software

One ideal of distributed systems software is something known as the single-system image. This
is software that makes a collection of independent computers appear as a single system to the
users.

Service models

The traditional computing model is a centralized one, where all computing takes place on a
single system. A client-server architecture divides computing activity between servers (which
provide some service) and clients (which access the service). This two-tiered model can extend
to multiple-tiers (a service requests yet another service and so on). Another model is a processor
pool model, where an arsenal of CPU servers can be accessed for computing needs. A
generalization of this is grid computing, which provides users with a collection of processing
power as well as storage resources, often supporting heterogeneous environments. Thin clients
are those where the client software is minimal; often managing the user interface and nothing
more (e.g., a system running only a web browser or an X-server). These are in contradistinction
to thick clients, which are generally machines running entire applications with occasional
reliance on services from servers (e.g., full PCs).

Networking

Networks fall into two broad categories: circuit-switched versus packet switched. A circuit-
switched network is one where a dedicated path is established between two endpoints. It
provides guaranteed bandwidth and constant latency. The telephone network is an example of
circuit switching, providing a maximum delay of 150 msec. and digitizing voice to a constant 64
kbps data rate. Packet-switched networking uses a shared interconnect. Data is segmented into

CS 417: the one hour study guide for exam 1

© 2005-2009 Paul Krzyzanowski. All rights reserved. - 3 - Last updated: February 18, 2009

packets and each packet must be identified and addressed. These networks generally cannot
provide guaranteed bandwidth or constant latency. Ethernet is an example of a packet-
switched network.

Data goes over a network in one of two ways: baseband or broadband. Only one node may
transmit data at a time on a baseband network but, for that time, it has the full bandwidth of
the network. A broadband network, on the other hand, has its available bandwidth divided into
multiple channels, or frequency bands. Cable TV is an example of a broadband network.
However, data services offered by cable providers are confined to two of those channels (one
for downstream traffic and another for upstream), making IP access effectively baseband within
broadband. Don’t confuse these terms with the marketing community’s use of broadband to
refer to any relatively high-speed home networking.

Ethernet is the most widely used data network for local area networking. It uses a system called
carrier sense multiple access with collision detection (CSMA/CD) to access the network. This is
analogous to making a phone call on a party line system. The network interface card monitors
the network. Only when it detects no traffic does it send out its packet. While doing so, it still
monitors the network to detect a collision – the case where two cards decided to send a packet
out simultaneously. If a collision took place, the transmission is reattempted again at a later
time. Progressively longer back-off times are used when collisions are encountered to ensure
that overall performance degrades gracefully.

Data networking is generally implemented as a stack of several protocols – each responsible for
a specific aspect of networking. The OSI reference model defines seven layers of network
protocols. Some of the more interesting ones are: the network, transport, and presentation
layers. The network layer (3) manages the journey of packets from one machine to another. The
transport layer (4) manages the communication of data from one application to another. The
presentation layer (6) manages the representation of data and handles any necessary
conversion of data types across architectures (for example, different byte ordering in integers,
different character representations).

IP Networking

The Internet Protocol (IP) handles the interconnection of multiple local and wide-area networks.
It is a logical network whose data is transported by physical networks (such as Ethernet, for
example). Each machine on an IP network must have an IP address. The addressing scheme for
IP divided addresses into two segments: a network part of the address, which is used in
determining where to route the packet, and a host part, which is used in identifying the specific
host within that local area network.

Instead of using a single network-host partition, IP was designed to use three distinct
partitions, or classes of networks: A, B, and C. This allowed for a small number of huge networks
and a large number of networks with a small number of machines. However, the allocation of
machines to networks was still inefficient. An organization that needed addresses for 300
machines would be allocated a class B network, and over 65,000 addresses would go unused (a

CS 417: the one hour study guide for exam 1

© 2005-2009 Paul Krzyzanowski. All rights reserved. - 4 - Last updated: February 18, 2009

class C network, accommodating only 254 machines, would have been too small). Classless
Inter-Domain Routing (CIDR) was created to alleviate this inefficiency. Networks could be
allocated to organizations on any power of two (arbitrary network-host partitioning). This made
routing tables a bit more complex; they now need to have an extra datum: the number of
leading bits that constitute the network part of the address.

Since IP is a logical network, any machine that needs to send out IP packets must do so via the
physical network. Typically, this is Ethernet (which uses a 48-bit Ethernet address, unrelated to a
32-bit IP address). To send an IP packet out, the system needs to identify the physical
destination address (MAC, or Media Access Control address) that corresponds to the desired IP
destination. The Address Resolution Protocol, or ARP, accomplishes this. ARP works by
broadcasting a request containing an IP address (“do you know the corresponding MAC address
for this IP address?) and then waiting for a response from the machine with the corresponding
IP address. To avoid doing this for every outgoing packet, it maintains a cache of most recently
used addresses.

There are two transport-layer protocols on top of IP: TCP and UDP. TCP (Transmission Control
Protocol) provides virtual circuit (connection-oriented) service. This layer of software ensures that
packets arrive in order to the application and lost or corrupt packets are retransmitted. The
transport layer keeps track of the destination so that the application can have the illusion of a
connected data stream. UDP (User Datagram Protocol) provides datagram (connectionless)
service. While UDP drops packets with corrupt data, it does not ensure in-order delivery or
reliable delivery. Port numbers in both TCP and UDP are used to allow the operating system to
direct the data to the appropriate application (or, more precisely, to the socket that is associated
with the communication stream).

Sockets are an interface to the network provided to applications by the operating system. They
are created with the socket system call and assigned an address and port number with the bind
system call. For connection-oriented protocols, a socket on the server can be set to listen for
connections with the listen system call. The accept call blocks until a connection is received, at
which point the server receives a socket dedicated to that connection. A client can establish a
connection with the connect system call. After this, sending and receiving data is compatible
with file operations: the same read/write system calls can be used. When communication is
complete, the socket can be closed with the shutdown or close system calls.

Quality of Service

As IP networks began to be used for carrying continuous media, such as voice and data, it
became clear that the protocol has no provisions for controlling quality of service (QoS). There
are two basic approaches for dealing with quality of service over networks: hard QoS and soft
QoS. Soft QoS refers to prioritization without any reservation of resources from routers or
endpoints or any a priori negotiation for a level of service. Hard QoS refers to a system where
such negotiation may take place and the network is capable of providing a guaranteed level of
service for a data stream.

CS 417: the one hour study guide for exam 1

© 2005-2009 Paul Krzyzanowski. All rights reserved. - 5 - Last updated: February 18, 2009

IP was largely designed as a system that would provide best-effort packet delivery but with no
guarantees on the path a packet will take, whether it gets dropped, or what order it arrives in.
Several approaches were taken to attempt to provide better controls for the delivery of IP
packets.

Flow detection: Many routers attempt to detect a flow of a stream of packets from one address/
port to another address/port and then dropping or delaying packets to control the flow rate.
Routers can also be programmed to drop TCP packets over UDP or vice versa or drop packets
when traffic exceeds an allotted bandwidth. Routers can also manage several queues based on
flows, connected networks, or source or destination addresses and ports. Traffic shaping is
when a router queues packets in certain flows during peak usage for later retransmission when
there is available bandwidth. With traffic policing, traffic that exceeds the allocated bandwidth
for a particular flow is discarded.

Inefficient use of packets: Having a system send lots of small packets instead of a few larger ones
is clearly inefficient. For example, the overhead of TCP, IP, and ethernet headers is approximately
58 bytes. Sending one byte of date requires 59 bytes – a 5,800% overhead! Nagle’s algorithm
adds any new transmitted TCP/IP data to a buffer rather than sending it immediately if there are
any unacknowledged packets outstanding. Incidentally, Nagle’s algorithm can be disabled on a
socket with the TCP_NODELAY option to the setsockopt system call

Differentiated services: Flow control mechanisms are outside the purview of programmers or
even the computers at either end: it is up to the router configuration to define the policies.
Differentiated services provide a way for programmers to provide advisory information inside
an IP header on how a packet should be processed by routers. A packet can be assigned a
priority as well as high/low levels for reliability, throughput, and delay. It is entirely up to the
routers to decide how to process this information or whether to process it at all. Differentiated
services are referred to as soft QoS: there is no guarantee on the actual quality of service that
will be delivered.

Hard QoS approach: The Reservation protocol, RSVP, has been developed to allow a flow of
packets to be routed with rate and/or delay guarantees. The problem with providing this is that
all routers in the path from the source to the destination must be configured to support RSVP:
each intermediate router must commit to reserving the needed amount of routing resources to
guarantee the desired level of service.

ATM

Bandwidth and latency are, of course, critical issues for real-time and streaming media
applications. We can categorize the timing demands of traffic into three categories:
asynchronous data has no timing requirements for message delivery; synchronous data must be
delivered at strict deadlines; and isochronous data must meet specific bandwidth needs but
may be delivered sooner than needed (streaming media with a receive buffer is an example).

CS 417: the one hour study guide for exam 1

© 2005-2009 Paul Krzyzanowski. All rights reserved. - 6 - Last updated: February 18, 2009

ATM, or Asynchronous Transfer Mode, networking was created to bridge the synchronous needs
of telephony (low bandwidth but precisely scheduled), asynchronous data networking (often
high bandwidth), and isochronous streaming media applications. ATM is a packet based
network that negotiates a circuit (route) when a connection is first established. Every router
commits to having the requisite resources to provide for the service needs of the connection.
The connection is created to provide ABR (available bit rate), CBR (constant bit rate), or VBR
(variable bit rate) service.

ATM routes small (53-byte) cells in contrast to the variable-size packets of IP. This allows a router
to express its service in cells per second, simplifies switching, and avoids the issue of large
packets delaying small ones.

Naming

Names are used for identifying a variety of things. We often use a name server (offering a
naming service) to perform a name to address mapping. An address is nothing more than the
lower representation of a name. For example, you can’t just look at a string like 192.168.1.5 and
say it is an address. To an IP driver it is treated as a name and the address is the underlying
ethernet address. Binding is the association of a name to an address. Resolution is the process of
looking up that name to address binding.

Static binding refers to a hard-wired association between a name and an address (e.g., hard-
coded in a program). Early binding refers to a resolution that is performed ahead of time and
cached for future use. Late binding refers to performing the resolution just at the time a name-
to-address binding is needed.

The Domain Name Server (DNS) is an example of a distributed name server for resolving domain
names into IP addresses. Each server is responsible for answering questions about machines
within its zone. A name server will do one of several things: (1) answer a request if it already
knows the answer, (2) contact another name server(s) to search for the answer, (3) return an
error fit he domain name does not exist, or (4) return a referral – the address of another name
server that may know more of the answer. For example, searching for mail.pk.org (with no
cached information) begins by querying one of several replicated root name servers. These
keep track for name servers responsible for top-level domains. This query will give you a referral
to a name server that is responsible the .org domain; querying that name server will give you a
name server responsible for pk.org. Finally, the name server responsible for pk.org can provide
the IP address or an authoritative “this host does not exist” response. Along the way, referrals
are cached so that a name server need not go through the entire process again.

Case Study: The Google Cluster Architecture

The Google Cluster architecture is built atop over 10,000 unreliable commodity PCs running
fault-tolerant software. The goal of the system is energy efficiency and the best price for the
realized performance rather than maximizing processor performance.

CS 417: the one hour study guide for exam 1

© 2005-2009 Paul Krzyzanowski. All rights reserved. - 7 - Last updated: February 18, 2009

The Google search service contains several clusters that are distributed worldwide. Each of
these clusters has several thousand machines. A user's query is directed to a specific cluster via
the DNS lookup of google.com. The DNS load-balancing system takes the user's round-trip time
and system capacity into account to provide the address of a suiteable cluster. Once the
request gets to the cluster, a hardware load balancer forwards the request to one of the web
servers in the cluster.

The fundamental approach to exploiting distribution is to transform a query on a very large
database into a much of queries on smaller databases, followed by a merge of the results.

The web server performs a query against several index servers. Since the index is many
terabytes in size, it is divided into pieces (shards), each holding a subset of the documents from
the full index. Each of these index servers is replicated, with a load balancer assigning query
requests. If any of the replica servers goes down then performance is degraded proportionally.
The index server returns a list of document IDs to the web server that made the query.

The next task for the web server is to take the result from the index queries and consult
document servers that get the title, URL, and the in-context snippet from the document. As
with index lookup, the documents are also randomly distributed among multiple document
servers and each server has multiple replicas that are load balanced.

Most index and document lookup operations are read-only and updates to the data are
infrequent. Replicas can be taken off-line during an update, so consistency problems are not an
issue.

Since individual shards (pieces of the index or pieces of the document database) don't need to
communicate with each other, performance can scale almost linearly with an increase in the
number of machines. Because the performance scales so well, the emphasis on optimizing cost
favors using commodity components instead of, say, quad-processor motherboards whose cost
is disproportionately higher as well as using inexpensive and somewhat slower disks.

Remote Procedure Calls

One problem with the interface offered by sockets was that it encouraged a send-receive model
of interaction. However, most programs use a functional (procedure call) model. Remote
procedure calls are a programming language construct (something provided by the compiler,
as opposed to an operating system construct such as sockets). They provide the illusion of
calling a procedure on a remote machine. During this time, execution of the local thread stops
until the results are returned. The programmer is alleviated from packaging data, sending and
receiving messages, and parsing results.

The illusion of a remote procedure call is accomplished by generating stub functions. On the
client side, the stub is a function with the same interface as the desired remote procedure. Its
job is to take the parameters, marshal them into a network message, send them to the server,
await a reply, and then unmarshal the results and return them to the caller. On the server side,

CS 417: the one hour study guide for exam 1

© 2005-2009 Paul Krzyzanowski. All rights reserved. - 8 - Last updated: February 18, 2009

the stub (sometimes known as a skeleton) is responsible for being the main program that
registers the service and awaits incoming requests for running the remote procedure. It
unmarshals the data in the request, calls the user’s procedure, and marshals the results into a
network message that is sent back to the recipient.

Sun (ONC) RPC

Sun’s RPC was one of the first RPC systems to achieve widespread use. It is still in use on
virtually all Unix-derived systems (System V, *BSD, Linux, OS X). It uses a precompiler called
rpcgen that takes input from an interface definition language (IDL) file. This is a file that defines
the interfaces to the remote procedures. Fron this, rpcgen creates client stub functions and a
server stub program. These can be compiled and linked with the client and server functions,
respectively.

Every interface is assigned a unique 32-bit number, known as a program number. When the
server starts up, it binds a socket to any available port and registers that port number and its
program number with a name server, known as the portmapper, running on the same machine.
A client, before invoking any remote procedure calls, contacts the portmapper on the desired
server to find the port to which it needs to send its requests.

DCE RPC

The Distributed Computing Environment, defined by the Open Group created its own flavor of
RPC, very similar to Sun’s. They also had the programmer specify an interface in an IDL, which
they called the Interface Definition Notation (IDN).

To avoid the problem of picking a “unique” 32-bit identifier for the interface, DCE RPC provides
the programmer with a program called uuidgen. This generates a unique universal ID (UUID) – a
128-bit number that is a function of the current time and ethernet address.

The DCE also introduced the concept of a cell, which is an administrative grouping of machines.
Each cell has a cell directory server that maintains information about the services available
within the cell. Each machine in the cell knows how to contact the cell directory server. When a
server program starts up under DCE RPC, it registers its port and the interface’s UUID with a
local name server (the DCE host dæmon, dced, which is similar to the portmapper). It also
registers the UUID, host mapping with the cell directory server. This allows a degree of location
transparency for services: a client does not need to know what machine a service lives on a
priori.

As object oriented languages gained popularity in the late 1980s and 1990s, RPC systems like
Sun’s and DCE’s proved incapable of handling some object oriented constructs, such as
instances of objects or polymorphism (different functions sharing the same name, with the
function distinguished by the incoming parameters). A new generation of RPC systems dealt
with these issues.

CS 417: the one hour study guide for exam 1

© 2005-2009 Paul Krzyzanowski. All rights reserved. - 9 - Last updated: February 18, 2009

Microsoft DCOM & ORPC

Microsoft already had a scheme in place for dynamically loading components into a process.
This was known as COM, the Component Object Model and provided a well-defined
mechanism for a process to identify and access interfaces within the component. The same
model was extended to invoke remotely-located components to become the Distributed
Component Object Model (DCOM). Because the components can no longer be loaded into the
local process space (as they’re on a remote system), they have to be loaded by some process.
This process is known as a surrogate process. It runs on the server, accepting remote requests for
loading components and invoking operations on them.

DCOM is implemented through remote procedure calls. Microsoft enhanced DCE RPC to create
what they termed Object RPC (ORPC). This is essentially DCE RPC with the addition of support
for an interface pointer identifier (IPID). The IPID provides the ability to identify a specific
instance of a remote object. Interfaces are defined via the Microsoft Interface Definition
Language (MIDL) and compiled into client and server side stubs. The client-side stub becomes
the local COM object that is loaded when the object is activated.

Since objects can be instantiated and deleted remotely, the surrogate process needs to ensure
that there isn’t a build-up of objects that are no longer needed by any client. Microsoft
accomplishes this via remote reference counting. This is an explicit action where the client can
send requests to increment or decrement a reference count on the server. When their reference
count drops to zero, the surrogate process deletes the object. To guard against programming
errors or processes that terminated abnormally, a secondary mechanism exists, called pinging.
The client must periodically send the server a ping set – a list of all the remote objects that are
currently active. If the server does not receive this information within a certain period, it elides
the objects.

CORBA

The Common Object Request Broker Architecture (CORBA) was created to provide a software
platform for distributing objects that is architecture, language, and operating system
independent. The core concept is the ORB – the Object Request Broker. This is the collection of
stub functions and libraries that support the remote invocation of procedures and the
management of objects. CORBA provides an Interface Definition Language (IDL) that is
compiled with a pre-compiler to create client and server stubs.

CORBA provides a rich set of capabilities for the management of objects. These include the
ability to start the server if it is not running, discover interfaces, persist objects to persistent
media,

One of the biggest problems with CORBA (aside from its complexity) was the fact that, while
the programming interfaces were defined, the underlying protocol was not. This meant that
clients and servers would often not be able to communicate unless they used an
implementation of CORBA from the same vendor. This was rectified in 1996 with the

CS 417: the one hour study guide for exam 1

© 2005-2009 Paul Krzyzanowski. All rights reserved. - 10 - Last updated: February 18, 2009

introduction of the Internet Inter-ORB Protocol (IIOP). By this time, however, much of the
momentum of using CORBA over the Internet was gone.

Java RMI

When Java was created, it was designed to be a language for deploying downloadable applets.
In 1995, Sun extended Java to support Remote Method Invocation (RMI). This allows a
programmer to invoke methods on objects that are resident on other JVMs.

Since RMI is designed for Java, there is no need for OS, language, or architecture
interoperability. This allows RMI to have a simple and clean design. Classes that interact with
RMI must simply play by a couple of rules. All parameters to remote methods must implement
the serializable class. This ensures that the data can be serialized into a byte stream for transport
over the network. All remote interfaces (methods that may be invoked from a remote Java
virtual machine) must extend the remote class.

RMI provides a naming service called rmiregistry to allow clients to locate remote object
references. These objects are given symbolic names and looked up via a URI naming scheme
(e.g., “rmi://remus.rutgers.edu:2311/testinterface”).

Java’s distributed garbage collection is somewhat simpler than Microsoft’s. There are two
operations that a client can invoke: dirty and free. A client JVM sends a dirty call to the server
when the object is in use and is refreshed periodically. When there are no more references to
the object, the client sends a clean call to the server so that it can delete the object.

XML RPC

As people started looking beyond the LAN for hosting services via RPC, firewalls stood in the
way. Most server-side RPC systems had a habit of asking the operating system to pick any
available port. This required opening up a whole range of ports on a firewall. Moreover, people
often could not get firewall rules modified in some environments. A workaround to this is to
send RPC messages via HTTP ports (e.g., 80 and 443), and have the messages formatted as XML
messages to get around any content-inspecting firewalls.

XML-RPC was created in 1998 as a simple protocol that marshals all requests and responses into
XML messages. There are a lot of libraries to support this system but no IDL compiler or stub
function generator thus far.

SOAP

XML RPC took an evolutionary fork and evolved (with the support of companies such as
Microsoft and IBM) into something known as SOAP, the Simple Object Access Protocol. XML RPC
is a subset of SOAP. In addition to remote procedure calls, SOAP added support for general
purpose messaging (send, receive, asynchronous notification) of messages. SOAP invocations
are XML messages sent via an HTTP protocol. SOAP services can be described via an XML

CS 417: the one hour study guide for exam 1

© 2005-2009 Paul Krzyzanowski. All rights reserved. - 11 - Last updated: February 18, 2009

document formatted to conform to an interface specified by a corresponding Web Services
Description Language (WSDL) document – another XML document.

.NET

A problem with Microsoft’s DCOM was that it was a somewhat low-level implementation.
Clients had to provide reference counting of their objects explicitly and the convenience of
using DCOM depended very much on the language (easy in VB, difficult in C++). Moreover, the
use of operating-system-selected random ports, and a binary data format made it difficult to
use over the Internet where firewalls may block certain ports or requests need to in an XML
format and be sent over HTTP.

With .NET, Microsoft provided (among other things) a runtime environment, a set of libraries,
and a web server that provides inbuilt support for web services. For supporting function-based
access to web services, .NET provides a remoting capability that allows a process to interact with
objects that reside on other processes and other machines.

.NET Remoting was created to be a successor to DCOM that would work more easily over the
Internet (no random ports, for example, as well as the ability to use XML over HTTP). As with
other RPC systems, client and server stub functions (proxies) are created. Microsoft’s Visual
Studio application development environment hides the mechanics of this and integrates
remote procedure calls directly into the language.

These stubs rely on the .NET runtime system to marshal parameters into one of several types,
which include SOAP or binary formats. The .NET runtime system then sends the message over a
particular channel that that was set up for transport. This channel may be HTTP using TCP/IP to
send SOAP messages, TCP/IP with no wrapping protocol to send binary messages on a local-
area network, or named pipes to send messages between processes on the same machine.
Microsoft’s web server, IIS, can be configured to directs certain URLs that contain the SOAP
(encapsulated in HTTP) request to specific objects running under the .NET framework, which
then sends a response back to the web server, which is then returned to the caller.

.NET manages object lifetime in three ways:

1. Single call objects instantiate a new instance of the object for a call and immediately clean it
up upon return.

2. Singleton objects share the same instance of the object among all callers. This is much like
traditional function calls in non-object-oriented systems.

3. Finally, Client activated objects are similar to objects in DCOM and created on demand (e.g.,
via a new operation). .NET manages object lifetime of client activated objects by setting a
lease timer each time a method is called on an object. The object will be cleaned up unless
the client either makes additional calls to reset the lease time or sends an explicit message

CS 417: the one hour study guide for exam 1

© 2005-2009 Paul Krzyzanowski. All rights reserved. - 12 - Last updated: February 18, 2009

to renew the lease time. This is a very similar concept to Java RMI. There is no more
reference counting as under DCOM.

Distributed file systems

To provide the same system call interface for supporting different local file systems as well as
remote files, operating systems generally rely on a layer of abstraction that allows different file
system-specific interfaces to coexist underneath the common system calls. On most Unix-
derived systems (e.g., Linux, BSD, OS X, SunOS), this is known as the VFS layer (Virtual File
System).

There are a couple of models for implementing distributed file systems: the download/upload
model or the remote procedure call model. In a stateful file system, the server maintains varying
amounts of state about client access to files (e.g., whether a file is open, whether a file has been
downloaded, cached blocks, modes of access). In a stateless file system, the server maintains no
state about a client’s access to files. The design of a file system will influence the access
semantics to files. Sequential semantics are what we commonly expect to see in file systems,
where reads return the results of previous writes. Session semantics occur when an application
“owns” the file for the entire access session, writing the contents of the file – hence making the
updates visible to others – on close, and thereby overwriting any modifications made by others
prior to that.

NFS

NFS was designed as a stateless, RPC-based model implementing commands such as read
bytes, write bytes, link files, create a directory, and remove a file. Since the server does not
maintain any state, there is no need for remote open or close procedures: these only establish
state on the client. NFS works well in faulty environments – there’s no state to restore if a client
or server crashes. To improve performance, a client reads data a block (8 KB by default) at a time
and performs read-ahead (fetching future blocks before they are needed). NFS suffers from
ambiguous semantics because the server (or other clients) has no idea what blocks the client
has cached and the client does not know whether its cached blocks are still valid. The system
checks modification times if there are file operations to the server and otherwise invalidates the
blocks after a few seconds. File locking could not be supported because of NFS’s stateless
design but was added through a separate lock manager that maintained the state of locks.

CS 417: the one hour study guide for exam 1

© 2005-2009 Paul Krzyzanowski. All rights reserved. - 13 - Last updated: February 18, 2009

