
1

Page 1Page 1

Introduction

Paul Krzyzanowski

pxk@cs.rutgers.edu

Distributed Systems

Except as otherwise noted, the content of this presentation is licensed under the Creative Commons
Attribution 2.5 License.

Page 2Page 2

What can we do now
that we could not do before?

Page 3

Technology advances

Processors
Memory

Networking

Storage

Protocols

Page 4

Networking: Ethernet - 1973, 1976

June 1976: Robert Metcalfe presents the concept of
Ethernet at the National Computer Conference

1980: Ethernet introduced as de facto standard (DEC,
Intel, Xerox)

Page 5

Network architecture

LAN speeds
– Original Ethernet: 2.94 Mbps

– 1985: thick Ethernet: 10 Mbps
1 Mbps with twisted pair networking

– 1991: 10BaseT - twisted pair: 10 Mbps
Switched networking: scalable bandwidth

– 1995: 100 Mbps Ethernet

– 1998: 1 Gbps (Gigabit) Ethernet

– 1999: 802.11b (wireless Ethernet) standardized

– 2001: 10 Gbps introduced

– 2005: 100 Gbps (over optical link)

348 – >35,000x
faster

Page 6

Network Connectivity

Then:
– Large companies and universities on Internet
– Gateways between other networks
– Dial-up bulletin boards
– 1985: 1,961 hosts on the Internet

Now:
– One Internet (mostly)
– 2008: 570,937,778 hosts on the Internet

– Widespread connectivity
High-speed WAN connectivity: 1– >50 Mbps

– Switched LANs
– Wireless networking

570million
more hosts

2

Page 7

Network Connectivity

Page 8

Computing power

Computers got…
– Smaller

– Cheaper

– Power efficient

– Faster

Microprocessors became technology leaders

Page 9

Computing Power

1974: Intel 8080

2 MHz, 6K transistors

2004: Intel P4 Prescott

3.6 GHz, 125 million transistors

2006: Intel Core 2 Duo

2.93 GHz, 291 million transistors

Page 10

Storage: RAM

year $/MB typical
1977 $32,000 16K

1987 $250 640K-2MB

1997 $2 64MB-256MB

2007 $0.06 512MB-2GB+

9,000x cheaper
4,000x more capacity

Page 11

Storage: disk
129,000x cheaper in 20 years
18,750x more capacity

Recording density increased over
60,000,000 times over 50 years

1977: 360KB floppy drive – $1480
$11,529 / GB (but 2,713 5½″ disks!)

1987: 40 MB drive for – $679
$16,975K / GB

2008: 750 GB drive for – $99
$0.13 / GB

Page 12

Music Collection

4,207 Billboard hits
– 18 GB

– Average song size: 4.4 MB

Today
– Download time per song @12.9 Mbps: 3.5 sec

– Storage cost: $2.38

Approx 20 years ago (1987)
– Download time per song, V90 modem @44 Kbps:

15 minutes

– Storage cost: $305,55

3

Page 13

Protocols

Faster CPU
more time for protocol processing

– ECC, checksums, parsing (e.g. XML)

– Image, audio compression feasible

Faster network
bigger (and bloated) protocols

– e.g., SOAP/XML, H.323

Page 14

Why do we want to network?

• Performance ratio
– Scaling multiprocessors may not be possible or cost effective

• Distributing applications may make sense
– ATMs, graphics, remote monitoring

• Interactive communication & entertainment
– work and play together:

email, gaming, telephony, instant messaging

• Remote content
– web browsing, music & video downloads, IPTV, file servers

• Mobility

• Increased reliability

• Incremental growth

Page 15

Problems

Designing distributed software can be difficult
– Operating systems handling distribution
– Programming languages?
– Efficiency?
– Reliability?
– Administration?

Network
– disconnect, loss of data, latency

Security
– want easy and convenient access

Page 16Page 16

Building and classifying
distributed systems

Page 17

Flynn’s Taxonomy (1972)

SISD
– traditional uniprocessor system

SIMD
– array (vector) processor
– Examples:

• GPUs – Graphical Processing Units for video
• APU (attached processor unit in Cell processor)
• SSE3: Intel’s Streaming SIMD Extensions
• PowerPC AltiVec (Velocity Engine)
• GPGPU (General Purpose GPU): AMD/ATI, Nvidia
• Intel Larrabee (late 2008?)

MISD
– Generally not used and doesn’t make sense
– Sometimes (rarely!) applied to classifying redundant systems

MIMD
– multiple computers, each with:

• program counter, program (instructions), data
– parallel and distributed systems

number of instruction streams
and number of data streams

Page 18

Subclassifying MIMD

memory
– shared memory systems: multiprocessors

– no shared memory: networks of computers,
multicomputers

interconnect
– bus

– switch

delay/bandwidth
– tightly coupled systems

– loosely coupled systems

4

Page 19

Bus

Bus-based multiprocessors

CPU A

SMP: Symmetric Multi-Processing
All CPUs connected to one bus (backplane)

Memory and peripherals are accessed via shared bus.
System looks the same from any processor.

CPU B
memory

Device
I/O

Page 20

Bus-based multiprocessors

Dealing with bus overload
- add local memory

CPU does I/O to cache memory
- access main memory on cache miss

Bus

memory
Device
I/O

CPU A

cache

CPU B

cache

Page 21

Working with a cache

CPU A reads location 12345 from memory

12345:7
Device
I/O

CPU A

12345: 7

CPU B

Bus

Page 22

Working with a cache

CPU A modifies location 12345

Bus

12345:7
Device
I/O

CPU A

12345: 7

CPU B

12345: 3

Page 23

Working with a cache

CPU B reads location 12345 from memory

12345:7
Device
I/O

CPU A

12345: 3

CPU B

12345: 7

Gets old value

Memory not coherent!

Bus

Page 24

Write-through cache

Fix coherency problem by writing all values
through bus to main memory

12345:7
Device
I/O

CPU A

12345: 7

CPU B

CPU A modifies location 12345 – write-through
main memory is now coherent

12345: 3
12345:3

Bus

5

Page 25

Write-through cache … continued

CPU B reads location 12345 from memory
- loads into cache

12345:3
Device
I/O

CPU A

12345: 3

CPU B

12345: 3

Bus

Page 26

Write-through cache

CPU A modifies location 12345
- write-through

12345:3
Device
I/O

CPU A

12345: 3

CPU B

12345: 3

Cache on CPU B not updated
Memory not coherent!

12345:0
12345: 0

Bus

Page 27

Snoopy cache

Add logic to each cache controller:
monitor the bus

12345: 3
Device
I/O

CPU A

12345: 3

CPU B

12345: 3

write [12345] 0

12345: 3

Virtually all bus-based architectures
use a snoopy cache

Bus

12345: 0
12345: 0

12345: 0

Page 28

Switched multiprocessors

• Bus-based architecture does not scale
to a large number of CPUs (8+)

Page 29

Switched multiprocessors

Divide memory into groups and connect chunks
of memory to the processors with a crossbar
switch

n2 crosspoint switches – expensive switching fabric

CPU

CPU

CPU

CPU

mem mem mem mem

Page 30

Crossbar alternative: omega network

Reduce crosspoint switches by adding
more switching stages

CPU

CPU

CPU

CPU

mem

mem

mem

mem

6

Page 31

Crossbar alternative: omega network

with n CPUs and n memory modules:
need log2n switching stages,
each with n/2 switches

Total: (nlog2n)/2 switches.

• Better than n2 but still a quite expensive

• delay increases:

1024 CPU and memory chunks

overhead of 10 switching stages to memory and 10 back.

CPU

CPU

CPU

CPU

mem

mem

mem

mem

Page 32

NUMA

• Hierarchical Memory System
• Each CPU has local memory
• Other CPU’s memory is in its own address

space
– slower access

• Better average access time than omega
network if most accesses are local

• Placement of code and data becomes difficult

Page 33

NUMA

• SGI Origin’s ccNUMA

• AMD64 Opteron
– Each CPU gets a bank of DDR memory
– Inter-processor communications are sent over a

HyperTransport link

• Linux 2.5 kernel
– Multiple run queues
– Structures for determining layout of memory and

processors

Page 34

Bus-based multicomputers

• No shared memory

• Communication mechanism needed on bus
– Traffic much lower than memory access

– Need not use physical system bus
• Can use LAN (local area network) instead

Page 35

Bus-based multicomputers

Collection of workstations on a LAN

Interconnect

CPU

memory

LAN
connector

CPU

memory

LAN
connector

CPU

memory

LAN
connector

CPU

memory

LAN
connector

Page 36

Switched multicomputers

Collection of workstations on a LAN

CPU

memory

LAN
connector

CPU

memory

LAN
connector

CPU

memory

LAN
connector

CPU

memory

LAN
connector

n-port switch

7

Page 37

Software

Single System Image
Collection of independent computers that appears
as a single system to the user(s)

• Independent: autonomous

• Single system: user not aware of distribution

Distributed systems software

Responsible for maintaining single system image

Page 38

You know you have a distributed
system when the crash of a
computer you’ve never heard of
stops you from getting any work
done.

– Leslie Lamport

Page 39

Coupling

Tightly versus loosely coupled software

Tightly versus loosely coupled hardware

Page 40

Design issues: Transparency

High level: hide distribution from users
Low level: hide distribution from software

– Location transparency:
users don’t care where resources are

– Migration transparency:
resources move at will

– Replication transparency:
users cannot tell whether there are copies of resources

– Concurrency transparency:
users share resources transparently

– Parallelism transparency:
operations take place in parallel without user’s knowledge

Page 41

Design issues

Reliability
– Availability: fraction of time system is usable

• Achieve with redundancy

– Reliability: data must not get lost
• Includes security

Performance
– Communication network may be slow and/or

unreliable

Scalability
– Distributable vs. centralized algorithms
– Can we take advantage of having lots of

computers?

Page 42Page 42

Service Models

8

Page 43

Centralized model

• No networking

• Traditional time-sharing
system

• Direct connection of user terminals to system

• One or several CPUs

• Not easily scalable

• Limiting factor: number of CPUs in system
– Contention for same resources

Page 44

Client-server model

Environment consists of clients and servers

Service: task machine can perform

Server: machine that performs the task

Client: machine that is requesting the service

Directory server Print server File server

client client

Workstation model

assume client is used by one user at a time

Page 45

Peer to peer model

• Each machine on network has (mostly)
equivalent capabilities

• No machines are dedicated to serving others

• E.g., collection of PCs:
– Access other people’s files

– Send/receive email (without server)

– Gnutella-style content sharing

– SETI@home computation

Page 46

Processor pool model

What about idle workstations
(computing resources)?
– Let them sit idle

– Run jobs on them

Alternatively…
– Collection of CPUs that can be assigned processes

on demand

– Users won’t need heavy duty workstations
• GUI on local machine

– Computation model of Plan 9

Page 47

Grid computing

Provide users with seamless access to:
– Storage capacity

– Processing

– Network bandwidth

Heterogeneous and geographically distributed
systems

Page 48

Grid Computing

• Provide users with seamless access to:
– Storage capacity

– Processing

– Network bandwidth

• Heterogeneous and geographically distributed
systems

• Build a “supercomputer” on the fly via
networked, loosely coupled computers

9

Page 49

Cloud Computing

Resources are provided as a network (Internet)
service

– Software as a Service (SaaS)

– Google Apps

– Salesforce.com

Page 50Page 50

Multi-tier client-server
architectures

Page 51

Two-tier architecture

Common from mid 1980’s-early 1990’s
– UI on user’s desktop

– Application services on server

Page 52

Three-tier architecture

client
middle
tier

back-end

- queueing/scheduling
of user requests

-
transaction processor
(TP)

- Connection mgmt

- Format converision

- Database

- Legacy
application
processing

- User
interface

- some data
validation/
formatting

Page 53

Beyond three tiers

Most architectures are multi-tiered

client

w
e
b

se
rv

e
r

J
av

a
ap

pl
ic

at
io

n
se

rv
e
r

lo
ad

b
al

an
ce

r

fi
re

w
al

l

fi
re

w
al

l

database

Object
Store

Page 54Page 54

The end.

