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Introduction 
Presently, our most common exposure to distributed systems that exemplify some degree of 

transparency is through distributed file systems. We'd like remote files to look and feel just like 
local ones. 

A file system is responsible for the organization, storage, retrieval, naming, sharing, and 
protection of files. File systems provide directory services, which convert a file name (possibly a 
hierarchical one) into an internal identifier (e.g. inode, FAT index). They contain a representation 
of the file data itself and methods for accessing it (read/write).  The file system is responsible for 
controlling access to the data and for performing low-level operations such as buffering frequently-
used data and issuing disk I/O requests. 

Our goals in designing a distributed file system are to present certain degrees of transparency 
to the user and the system: 

access transparency 
Clients are unaware that files are distributed and can access them in the same way as 
local files are accessed. 

location transparency 
A consistent name space exists encompassing local as well as remote files. The name of a 
file does not give it location. 

concurrency transparency 
All clients have the same view of the state of the file system. This means that if one 
process is modifying a file, any other processes on the same system or remote systems that 
are accessing the files will see the modifications in a coherent manner. 

failure transparency 
The client and client programs should operate correctly after a server failure. 

heterogeneity 
File service should be provided across different hardware and operating system platforms. 

scalability 
The file system should work well in small environments (1 machine, a dozen machines) 
and also scale gracefully to huge ones (hundreds through tens of thousands of systems). 

replication transparency 
To support scalability, we may wish to replicate files across multiple servers. Clients 
should be unaware of this. 

migration transparency 
Files should be able to move around without the client's knowledge. 

support f ine-grained distribution of data 
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To optimize performance, we may wish to locate individual objects near the processes that 
use them. 

tolerance for network partit ioning 
The entire network or certain segments of it may be unavailable to a client during certain 
periods (e.g. disconnected operation of a laptop). The file system should be tolerant of 
this. 

 

Distributed file system concepts 
A file service is a specification of what the file system offers to clients. A f i le server  is the 

implementation of a file service and runs on one or more machines. 
A fi le itself contains a name, data, and attributes (such as owner, size, creation time, access 

rights). An immutable f i le is one that, once created, cannot be changed. Immutable files are easy 
to cache and to replicate across servers since their contents are guaranteed to remain unchanged. 

Two forms of protection are generally used in distributed file systems, and they are essentially 
the same techniques that are used in single-processor non-networked systems: 

capabilit ies 
Each user is granted a ticket (capability) from some trusted source for each object to 
which it has access. The capability specifies what kinds of access are allowed. 

access control lists 
Each file has a list of users associated with it and access permissions per user. Multiple 
users may be organized into an entity known as a group. 

File service types 

To provide a remote system with file service, we will have to select one of two models of 
operation. One of these is the upload/download model. In this model, there are two fundamental 
operations: read file transfers an entire file from the server to the requesting client, and write file 
copies the file back to the server. It is a simple model and efficient in that it provides local access to 
the file when it is being used. Three problems are evident.  It can be wasteful if the client needs 
access to only a small amount of the file data. It can be problematic if the client doesn't have 
enough space to cache the entire file. Finally, what happens if others need to modify the same file?  
The second model is a remote access model. The file service provides remote operations such as 
open, close, read bytes, write bytes, get attributes, etc. The file system itself runs on servers.  The 
drawback in this approach is the servers are accessed for the duration of file access rather than once 
to download the file and again to upload it. 

Another important distinction in providing file service is that of understanding the difference 
between directory service and file service. A directory service, in the context of file systems, maps 
human-friendly textual names for files to their internal locations, which can be used by the file 
service. The fi le service itself provides the file interface (this is mentioned above). Another 
component of file distributed file systems is the client module. This is the client-side interface for 
file and directory service. It provides a local file system interface to client software (for example, the 
vnode file system layer of a UNIX kernel). 
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Naming issues 

In designing a distributed file service, we should consider whether all machines (and 
processes) should have the exact same view of the directory hierarchy.  We might also wish to 
consider whether the name space on all machines should have a global root directory (a.k.a. super 
root) so that files can be accessed as, for example, //server/path. This is a model that was 
adopted by the Apollo Domain System, an early distributed file system, and more recently by the web 
community in the construction of a uniform resource locator (URL). 

In considering our goals in name resolution, we must distinguish between location 
transparency and location independence.  By location transparency we mean that the path name 
of a file gives no hint to where the file is located. For instance, we may refer to a file as 
//server1/dir/file. The server (server) can move anywhere without the client caring, so we 
have location transparency. However, if the file moves to server2 things will not work. If we have 
location independence, the files can be moved without their names changing. Hence, if machine 
or server names are embedded into path names we do not achieve location independence. 

It is desirable to have access transparency, so that applications and users can access remote 
files just as they access local files. To facilitate this, the remote file system name space should be 
syntactically consistent with the local name space. One way of accomplishing this is by redefining 
the way files are named and require an explicit syntax for identifying remote files. This can cause 
legacy applications to fail and user discontent (users will have to learn a new way of naming their 
files). An alternate solution is to use a file system mounting mechanism to overlay portions of 
another file system over a node in a local directory structure. Mounting is used in the local 
environment to construct a uniform name space from separate file systems (which reside on 
different disks or partitions) as well as incorporating special-purpose file systems into the name 
space (e.g. /proc on many UNIX systems allows file system access to processes). A remote file 
system can be mounted at a particular point in the local directory tree. Attempts to access files and 
directories under that node will be directed to the driver for that file system. 

To summarize, our naming options are: 
• machine and path naming (machine:path, ./machine/path). 
• mount remote file systems onto the local directory hierarchy (merging the two name 

spaces). 
• provide a single name space which looks the same on all machines. 

The first two of these options are relatively easy to implement. 

Types of names 

When we talk about file names, we refer to symbolic names (for example, server.c). 
These names are used by people (users or programmers) to refer to files. Another “name” is the 
identifier used by the system internally to refer to a file. We can think of this as a binary name 
(more precisely, as an address). On most UNIX file systems, this would be the device number and 
inode number.  On MS-DOS systems, this would be the drive letter and FAT index. 

Directories provide a mapping from symbolic names to file addresses (binary names).  
Typically, one symbolic name maps to one file address. If multiple symbolic names map onto one 
binary name, these are called hard links. On inode-based file systems (e.g., most UNIX systems), 
hard links must exist within the same device since the address (inode) is unique only on that 
device. On MS-DOS systems, they are not supported because file attributes are stored with the name 
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of the file. Having two symbolic names refer to the same data will cause problems in synchronizing 
file attributes (how would you locate other files that point to this data?).  A hack to allow multiple 
names  to refer to the same file (whether its on the same device or a different device)  is to have the 
symbolic name refer to a single file address but that file may have an attribute to tell the system 
that its contents contain a symbolic file name that should be dereferenced. Essentially, this adds a 
level of indirection: access a file which contains another file name, which references the file 
attributes and data. These files are known as symbolic links.  Finally, it is possible for one 
symbolic name to refer to multiple file addresses. This doesn't make much sense on a local system1, 
but can be useful on a networked file system to provide fault tolerance or enable the system to use 
the file address which is most efficient. 

Semantics of file sharing 

The analysis of file sharing semantics is that of understanding how files behave. For 
instance, on most systems, if a read follows a write, the read of that location will return the values 
just written. If two writes occur in succession, the following read will return the results of the last 
write. File systems that behave this way are said to observe sequential  semantics. 

Sequential semantics can be achieved in a distributed system if there is only one server and 
clients do not cache data. This can cause performance problems since clients will be going to the 
server for every file operation (such as single-byte reads). The performance problems can be 
alleviated with client caching. However, now if the client modifies its cache and another client reads 
data from the server, it will get obsolete data. Sequential semantics no longer hold. 

One solution is to make all the writes write-through to the server. This is inefficient and does 
not solve the problem of clients having invalid copies in their cache. To solve this, the server would 
have to notify all clients holding copies of the data. 

Another solution is to relax the semantics. We will simply tell the users that things do not 
work the same way on the distributed file system as they did on the local file system. The new rule 
can be “changes to an open file are initially visible only to the process (or machine) that modified 
it.” These are known as session semantics. 

Yet another solution is to make all the files immutable2. That is, a file cannot be open for 
modification, only for reading or creating. If we need to modify a file, we'll create a completely new 
file under the old name.  Immutable files are an aid to replication but they do not help with 
changes to the file's contents (or, more precisely, that the old file is obsolete because a new one 
with modified contents succeeded it). We still have to contend with the issue that there may be 
another process reading the old file. It's possible to detect that a file has changed and start failing 
requests from other processes. 

A final alternative is to use atomic transactions. To access a file or a group of files, a process 
first executes a begin transaction primitive to signal that all future operations will be executed 
indivisibly.  When the work is completed, an end transaction primitive is executed. If two or more 

                                                               
1 It really does make sense in a way. In the late 1980’s, David Korn created a file system that allowed multiple directories to be 
mounted over the same directory node. The Plan 9 operating system later adopted this technique and called it union mounts . 
One thing it is useful for is getting rid of the PATH environment variable in searching for executables; the executables are 
always found in /bin.  The name is resolved by searching through the file systems (directories) mounted on that node in a 
last-mounted, first-searched order. 
2 The Bullet server on the Amœba operating system is an example of a system that uses immutable files. 
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transactions start at the same time, the system ensures that the end result is as if they were run in 
some sequential order. All changes have an all or nothing property. 

File usage patterns 

It's clear that we cannot have the best of all worlds and that compromises will have to be 
made between the desired semantics and efficiency (efficiency encompasses increasing client 
performance, reducing network traffic, and minimizing server load). To design or select a suitable 
distributed file system, it is important to understand the usage patterns within a file system.  A study 
was made by Satyanarayanan in 1981 which exhibited the following: 
 

 Most files are under 10K bytes in size. This suggests that it may be feasible to transfer 
entire files (a simpler design).  However, a file system should still be able to support 
large files. 

 Most files have short lifetimes (many files are temporary files created by editors and 
compilers). It may be a good idea to keep these files local and see if they will be deleted 
soon. 

 Few files are shared. While sharing is a big issue theoretically, in practice it's hardly 
done. We may choose to accept session semantics and not worry too much about the 
consequences. 

 Files can be grouped into different classes, with each class exhibiting different 
properties: 

 system binaries: 
   read/only, widely distributed. These are good candidates for replication. 
  compiler and editor temporary files : 

short, unshared, disappear quickly. We'd like to keep these local if 
possible. 

  mailboxes (email): 
   not shared, frequently updated. We don't want to replicate these. 
  ordinary data files: 
   these may be shared. 
 

System design issues 

Name resolution 

In looking up the pathname of a file (e.g. via the namei function in the UNIX kernel), we may 
choose to evaluate a pathname a component at a time. For example, for a pathname 
aaa/bbb/ccc, we would perform a remote lookup of aaa, then another one of bbb, and finally 
one of ccc). Alternatively, we may pass the rest of the pathname to the remote machine as one 
lookup request once we find that a component is remote. The drawback of the latter scheme is (a) 
the remote server may be asked to walk up the tree by processing .. (parent node) components and 
reveal more of its file system than it wants and (b) other components cannot be mounted 
underneath the remote tree on the local system. Because of this, component at a time evaluation is 
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generally favored but it has performance problems (a lot more messages). We may choose to keep a 
local cache of component resolutions. 

Should servers maintain state? 

This issue is a topic of passionate debate.  A stateless system is one in which the client sends 
a request to a server, the server carries it out, and returns the result. Between these requests, no 
client-specific information is stored on the server.  A stateful  system is one where information 
about client connections is maintained on the server. 

In a stateless system: 
• Each request must be complete – the file has to be fully identified and any offsets 

specified. 
• Fault tolerance: if a server crashes and then recovers, no state was lost about client 

connections because there was no state to maintain. 
• No remote open/close calls are needed (they only serve to establish state). 
• No wasted server space per client. 
• No limit on the number of open files on the server; they aren't “open” – the server 

maintains no per-client state. 
• No problems if the client crashes. The server does not have any state to clean up. 

 
On a stateful system: 
• requests are shorter (less info to send). 
• better performance in processing the requests. 
• idempotency works; cache coherence is possible. 
• file locking is possible; the server can keep state that a certain client is locking a file 

(or portion thereof). 

Caching 

We can employ caching to improve system performance. There are four places in a 
distributed system where we can hold data: 

1. on the server's disk 
2. in a cache in the server's memory 
3. in the client's memory 
4. on the client's disk 

The first two places are not an issue since any interface to the server can check the 
centralized cache. It is in the last two places that problems arise and we have to consider the issue 
of cache consistency. Several approaches may be taken: 

write-through 
What if another client reads its own cached copy?  All accesses would require checking 
with the server first (adds network congestion) or require the server to maintain state on 
who has what files cached. Write-through also does not alleviate congestion on writes. 

delayed writes 
Data can be buffered locally (where consistency suffers) but files can be updated 
periodically. A single bulk write is far more efficient than lots of little writes every time 
any file contents are modified. Unfortunately the semantics become ambiguous. 
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write on close 
This is admitting that the file system uses session semantics. 

centralized control 
Server keeps track of who has what open in which mode.  We would have to support a 
stateful system and deal with signaling traffic. 

Distributed File Systems: case studies 
It is clear that compromises have to be made in a practical design. For example, we may 

trade-off file consistency for decreased network traffic. We may choose to use a connectionless 
protocol to enable clients to survive a server crash gracefully but sacrifice file locking.  This section 
examines a few distributed file systems. 

Network File System (NFS) 

Sun's NFS is one of the most popular and widespread distributed file systems in use today. 
The design goals of NFS were: 

• Any machine can be a client and/or a server. 
• NFS must support diskless workstations (that are booted from the network). Diskless 

workstations were Sun’s major product line. 
• Heterogeneous systems should be supported: clients and servers may have different 

hardware and/or operating systems. Interfaces for NFS were published to encourage the 
widespread adoption of NFS. 

• high performance: try to make remote access as comparable to local access through 
caching and read-ahead. 

From a transparency point of view NFS offers: 

access transparency 
Remote (NFS) files are accessed through normal system calls; the protocol is 
implemented under the VFS (vnode) layer in UNIX. 

location transparency 
The client adds remote file systems to its local name space via mount. File systems must 
be exported at the server.  The user is unaware of which directories are local and which 
are remote.  The location of the mount point in the local system is up to the client’s 
administrator. 

failure transparency  
NFS is stateless; UDP is used as a transport. If a server fails, the client retries. 

performance transparency 
Caching at the client will be used to improve performance 

no migration transparency 
The client mounts machines from a server. If the resource moves to another server, the 
client must know about the move. 

no support  for Unix semantics 
NFS is stateless, so stateful operations such as file locking are a problem. All UNIX file 
system controls may not be available. 
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devices? 
Since NFS had to support diskless workstations, where every file is remote, remote device 
files had to refer to the client's local devices. Otherwise there would be no way to access 
local devices in a diskless environment. 

NFS protocols 

The NFS client and server communicate over remote procedure calls (Sun’s RPC) using two 
protocols: the mounting protocol and the directory and file access protocol.  The mounting 
protocol is used to request a access to an exported directory (and the files and directories within 
that file system under that directory). The directory and file access protocol is used for accessing the 
files and directories (e.g. read/write bytes, create files, etc.). The use of RPC’s external data 
representation (XDR) allows NFS to communicate with heterogeneous machines. The initial design 
of NFS ran only with remote procedure calls over UDP. This was done for two reasons. The first 
reason is that UDP is somewhat faster than TCP but does not provide error correction (the UDP 
header provides a checksum of the data and headers). The second reason is that UDP does not 
require a connection to be present. This means that the server does not need to keep per-client 
connection state and there is no need to reestablish a connection if a server was rebooted. 

The lack of UDP error correction is remedied in the fact that remote procedure calls have 
built-in retry logic. The client can specify the maximum number of retries (default is 5) and a 
timeout period. If a valid response is not received within the timeout period the request is re-sent. 
To avoid server overload, the timeout period is then doubled. The retry continues until the limit has 
been reached. This same logic keeps NFS clients fault-tolerant in the presence of server failures: a 
client will keep retrying until the server responds. 

mounting protocol 

The client sends the pathname to the server and requests permission to access the contents of 
that directory. If the name is valid and exported (listed in /etc/dfs/sharetab on System V 
release 4 versions of UNIX, and /etc/exports on many other versions) the server returns a f i le 
handle to the client.  This file handle contains all the information needed to identify the file on the 
server: {file system type, disk ID, inode number, security info}. 

Mounting an NFS file system is accomplished by parsing the path name, contacting the 
remote machine for a file handle, and creating an in-core vnode at the mount point. A vnode points 
to an inode for a local UNIX file or, in the case of NFS, an rnode. The rnode contains specific 
information about the state of the file from the point of view of the client. Two forms of mounting 
are supported: 

static 
In this case, file systems are mounted with the mount command (generally during system 
boot). 

automounting 
One problem with static mounting is that if a client has a lot of remote resources 
mounted, boot-time can be excessive, particularly if any of the remote systems are not 
responding and the client keeps retrying. Another problem is that each machine has to 
maintain its own name space. If an administrator wants all machines to have the same 
name space, this can be an administrative headache. To combat these problems the 
automounter was introduced. 
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The automounter allows mounts and unmounts to be performed in response to client 
requests. A set of remote directories is associated with a local directory.  None are 
mounted initially. the first time any of these is referenced, the operating system sends a 
message to each of the servers. The first reply wins and that file system gets mounted (it is 
up to the administrator to ensure that all file systems are the same). To configure this, 
the automounter relies on mapping files that provide a mapping of client pathname to 
the server file system. These maps can be shared to facilitate providing a uniform naming 
space to a number of clients. 

directory and file access protocol 

Clients send RPC messages to the server to manipulate files and directories.  A file is accessed 
by performing a lookup remote procedure call.  This returns a file handle and attributes. It is not 
like an open in that no information is stored in any system tables on the server. After that, the 
handle may be passed as a parameter for other functions. For example, a read(handle, offset, 
count) function will read count bytes from location offset in the file referred to by handle. 

The entire directory and file access protocol is encapsulated in sixteen functions3.  These are: 

null no-operation but ensure that connectivity exists 

lookup lookup the file name in a directory 

create create a file or a symbolic link 

remove remove a file from a directory 

rename rename a file or directory 

read read bytes from a file 

write write bytes to a file 

link create a link to a file 

symlink create a symbolic link to a file 

readlink read the data in a symbolic link (do not follow the link) 

mkdir create a directory 

rmdir remove a directory 

readdur read from a directory 

getattr get attributes about a file or directory (type, access and modify 
times, and access permissions) 

setattr set file attributes 

statfs get information about the remote file system 

Accessing files 

Files are accessed through conventional system calls (thus providing access transparency). If 
you recall conventional UNIX systems, a hierarchical pathname is dereferenced to the file location 
with a kernel function called namei. This function maintains a reference to a current directory, 
                                                               
3 These functions are present in versions 2 and 3 of the NFS protocol. Version 3 added six more functions. 
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looks at one component and finds it in the directory, changes the reference to that directory, and 
continues until the entire path is resolved. At each point in traversing this pathname, it checks to 
see whether the component is a mount point, meaning that name resolution should continue on 
another file system. In the case of NFS, it continues with remote procedure calls to the server 
hosting that file system. 

Upon realizing that the rest of the pathname is remote, namei will continue to parse one 
component of the pathname at a time to ensure that references to .. and to symbolic links become 
local if necessary. Each component is retrieved via a remote procedure call which performs an NFS 
lookup. This procedure returns a file handle. An in-core rnode is created and the VFS layer in the 
file system creates a vnode to point to it. 

The application can now issue read and write system calls. The file descriptor in the user’s 
process will reference the in-core vnode at the VFS layer, which in turn will reference the in-core 
rnode at the NFS level which contains NFS-specific information, such as the file handle. At the NFS 
level, NFS read, write, etc. operations may now be performed, passing the file handle and local 
state (such as file offset) as parameters. No information is maintained on the server between 
requests; it is a stateless system. 

The RPC requests have the user ID and group ID number sent with them. This is a security 
hole that may be stopped by turning on RPC encryption. 

Performance 

NFS performance was generally found to be slower than accessing local files because of the 
network overhead.  To improve performance, reduce network congestion, and reduce server load, file 
data is cached at the client. Entire pathnames are also cached at the client to improve performance 
for directory lookups. 

server caching 
Server caching is automatic at the server in that the same buffer cache is used as for all 
other files on the server. The difference for NFS-related writes is that they are all write-
through to avoid unexpected data loss if the server dies. 

client caching 
The goal of client caching is to reduce the amount of remote operations.  Three forms of 
information are cached at the client: file data, file attribute information, and pathname 
bindings. We cache the results of read, readlink, getattr, lookup, and readdir 
operations.  The danger with caching is that inconsistencies may arise.  NFS tries to avoid 
inconsistencies (and/or increase performance) with: 

 validation - if caching one or more blocks of a file, save a time stamp.  When a file is 
opened or if the server is contacted for a new data block, compare the last 
modification time. If the remote modification time is more recent, invalidate the 
cache. 

 Validation is performed every three seconds on open files. 
 Cached data blocks are assumed to be valid for three seconds. 
 Cached directory blocks are assumed to be valid for thirty seconds. 
 Whenever a page is modified, it is marked dirty and scheduled to be written 

(asynchronously). The page is flushed when the file is closed. 
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Transfers of data are done in large chunks; the default is 8K bytes.  As soon as a chunk is 
received, the client immediately requests the next 8K-byte chunk. This is known as read-ahead. The 
assumption is that most file accesses are sequential and we might as well fetch the next block of 
data while we're working on our current block, anticipating that we'll likely need it. This way, by 
the time we do, it will either be there or we don't have to wait too long for it since it's on its way. 

Problems 

The biggest problem with NFS is file consistency. The caching and validation policies do not 
guarantee session semantics. 

NFS assumes that clocks between machines are synchronized and performs no clock 
synchronization between client and server. One place where this hurts is in distributed software 
development environments. A program such as make, which compares times of files (such as object 
and source) to determine whether to regenerate them, can either fail or give confusing results. 

Because of its stateless design, open with append mode cannot be guaranteed to work. You 
can open a file, get the attributes (size), and then write at that offset, but you'll have no assurance 
that somebody else did not write to that location after you received the attributes. In that case your 
write will overwrite the other once since it will go to the old end-of-file byte offset. 

Also because of its stateless nature, file locking cannot work. File locking implies that the 
server keeps track of which processes have locks on the file.  Sun's solution to this was to provide a 
separate process (a lock manager) that does keep state. 

One common programming practice under UNIX file systems for manipulating temporary 
data in files is to open a temporary file and then remove it from the directory. The name is gone, 
but the data persists because you still have the file open.  Under NFS, the server maintains no state 
about remotely opened files and removing a file will cause the file to disappear.  Since legacy 
applications depended on this, Sun's solution was to create a special hack for UNIX: if the same 
process that has a file open attempts to delete it, it is instead moved to a temporary name and 
deleted on close.  It's not a perfect solution, but it works well. 

Permission bits might change on the server and disallow future access to a file. Since NFS is 
stateless, it has to check access permissions each time it receives an NFS request. With local file 
systems, once access is granted initially, a process can continue accessing the file even if 
permissions change. 

By default, no data is encrypted and Unix-style authentication is used (used ID, group ID). 
NFS supports two additional forms of authentication: Diffie-Hellman and Kerberos. However, data is 
never encrypted and user-level software should be used to encrypt files if this is necessary. 

More fixes 
The original version of NFS was released in 1985, with version 2 released around 1988. In 1992, NFS 
was enhanced to version 3 (SunOS ≥5.5). Several changes were added to enhance the performance 
of the system: 
1. NFS was enhanced to support TCP. UDP caused more problems over wide-area networks than it 

did over LANs because of errors. To combat that and to support larger data transfer sizes, NFS 
was modified to support TCP as well as UDP. To minimize connection setup, all traffic can be 
multiplexed over one TCP connection. 

2. NFS always relied on the system buffer cache for caching file data. The buffer cache is often not 
very large and useful data was getting flushed because of the size of the cache. Sun introduced 
a caching file system, CacheFS, that provides more caching capability by using the disk. 
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Memory is still used as before, but a local disk is used if more cache space is needed. Data can 
be cached in chunks as large as 64K bytes and entire directories can be cached. 

3. NFS was modified to support asynchronous writes. If a client needed to send several write 
requests to a server, it would send them one after another. The server would respond to a request 
only after the data was flushed to the disk. Now multiple writes can be collected and sent as an 
aggregate request to the server. The server does not have to ensure that the data is on stable 
storage (disk) until it receives a commit request from the client. 

4. File attributes are returned with each remote procedure call now. The overhead is slight and 
saves clients from having to request file attributes separately (which was a common operation). 

5. Version 3 allows 64-bit rather than the old 32-bit file offsets (supporting file sizes over 18 
million terabytes). 

6. An enhanced lock manager was added to provide monitored locks. A status monitor monitors 
hosts with locks and informs a lock manager of a system crash. If a server crashes, the status 
monitor reinstates locks on recovery. If a client crashes, all locks from that client are freed on 
the server. 

7. A few more NFS functions were added: 
access check access permissions for a server 
mknod create a special device file on a server 
readdirplus extended read from a directory 
fsinfo get file system state information (static, as opposed to fsstat, which 

returns dynamic information) 
commit commit the cached data on the server to stable storage (e.g. disk) 

Remote File Sharing (RFS) 

At the time that Sun was developing NFS for SunOS, AT&T was developing its own distributed 
file system for UNIX System V. This file system was almost everything that NFS was not.  NFS had a 
very rudimentary and generic interface (the 16 remote procedure calls). One of its goals was that 
NFS servers could be written on many operating systems. RFS was committed to preserving UNIX 
System V file system semantics exactly. It would not provide just a remote file system, but rather a 
remote UNIX System V file system. As such, it would not be an easy feat to build an RFS server on 
non-UNIX machines. 

To provide UNIX System V file semantics, RFS was designed to be both stateful and 
connection-oriented. A client would establish a connection with a server upon mounting a remote 
file system and the server would maintain state on which files are open and which data blocks are 
in use. The server also detects client crashes, so cache consistency is guaranteed. 

Resource access on RFS is different from NFS. With NFS, a client machine has to know which 
directories are exported on which machines. This information is obtained only by going to that 
machine and examining the file containing exported file systems (or asking an administrator or 
someone who knows). RFS chose to add a level of indirection by employing a name server. A 
machine could advertise resources to the name server with some symbolic name.  Any other 
machine could then query the name server for resources advertised within that domain (group) of 
machines.  For fault tolerance, the several name servers could run concurrently with one designated 
as a primary. Should the primary name server die, the remaining name servers would elect a new 
acting primary name server. This adds a degree of transparency in that a client need not know the 
server's name or the location of the resource on the server. 

Another major difference between RFS and NFS is the handling of device files.  In UNIX 
systems, the file name space is used for access to devices: the inode simply has a flag stating that 
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the file is really a device and contains numbers to identify the kernel drivers. If one is accessing a 
remote file system and accesses a remote device file, should the access be to a local or to a remote 
device? AT&T's response was that it would be useful if access to a device on a remote file system 
would access the remote device. After all, you can always access your local devices through a local 
file system. Accessing remote devices allows for easy sharing of devices such as backup tape drives 
and printers. 

While Sun may have thought that accessing remote devices would be convenient, it had more 
important things to think about, namely its hardware. Sun's initial claim to fame was the 
development of the diskless workstation. A diskless workstation loads the operating system from 
some server and, upon booting, mounts all its file systems as remote (NFS) file systems since it does 
not have a local disk.  In this environment it is important that local hardware could be accessed 
(the keyboard, mouse, display, etc.). The only way this could be done is by making a rule that 
remote device files really refer to local devices.  While this solves the diskless problem, it does not 
allow for sharing devices through the file system. It also has the problem that if a client's kernel 
device numbers for a particular device differ from the server's, the wrong device may be accessed. 

RFS or NFS? Which is better?  The answer is it depends. If support for heterogeneous 
operating systems is desired, NFS is the winner. On the other hand, if support for UNIX file system 
semantics is important (cache coherency, file locking that works) then RFS wins. If complete 
support of every feature in a UNIX System V file system is required, RFS provides it; NFS caters to the 
lowest-common-denominator of file system operations. It support of remote devices is required, RFS 
can provide it while NFS will attempt to access the corresponding local device. RFS, because of its 
connection-oriented nature, is sensitive to server crashes. If an application has a remote file open 
and the server crashes, the mounted remote file system is unmounted and any open or closed files 
are immediately inaccessible.  With NFS, the NFS client simply keeps issuing NFS RPC requests until 
the server comes up again. Looking at the marketplace, NFS has completely overshadowed RFS, 
primarily because of its easy portability, the popularity of Suns in the late 1980s over machines 
running UNIX, System V, and the fault tolerance of NFS. 

Andrew File System (AFS) 

The goal of the Andrew File System (from Carnegie Mellon University, then a product of 
Transarc Corp., and now part of the Transarc division of IBM and available via the IBM public 
license) was to support information sharing on a large scale (thousands to 10000+ users). There 
were several incarnations of AFS, with the first version being available around 194, AFS-2 in 1986, 
and AFS-3 in 1989). 

The assumptions about file usage were: 
• most files are small 
• reads are much more common than writes 
• most files are read/written by one user 
• files are referenced in bursts (locality principle). Once referenced, a file will probably 

be referenced again. 
From these assumptions, the original goal of AFS was to use whole f i le serving on the server 

(send an entire file when it is opened) and whole fi le caching on the client (save the entire file 
onto a local disk). To enable this mode of operation, the user would have a cache partition on a 
local disk devoted to AFS. If a file was updated then the file would be written back to the server when 
the application performs a close. The local copy would remain cached at the client.  
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Implementation 

The client's machine has one disk partition devoted to the AFS cache (for example, 100M 
bytes, or whatever the client can spare). The client software manages this cache in an LRU (least 
recently used) manner and the clients communicate with a set of trusted servers. Each server 
presents a location-transparent UNIX (hierarchical) file name space to its clients. On the server, 
each physical disk partition contains files and directories that can be grouped into one or more 
volumes. A volume is nothing mmore than an administrative unit of organization (e.g., a user’s 
home directory, a local source tree). Each volume has a directory structure (a rooted hierarchy of 
files and directories) and is given a name and ID. Servers are grouped into administrative entities 
called cells. A cell is a collection of servers, administrators, clients, and users. Each cell is 
autonomous but cells may cooperate and present users with one uniform name space. The goal is 
that every client will see the same name space (by convention, under a directory /afs). Listing the 
directory /afs shows the participating cells (e.g., /afs/mit.edu). 

Each file and directory is identified by three 32-bit numbers: 

 volume ID: 
This identifies the volume to which the object belongs. The client caches the 
binding between volume ID and server, but the server is responsible for 
maintaining the bindings. 

 vnode ID: 
This is the “handle” (vnode number) that refers to the file on a particular server 
and disk partition (volume). 

 uniquifier: 
 This is a unique number to ensure that the same vnode IDs are not reused. 

Each server maintains a copy of a database that maps a volume number to its server. If the 
client request is incorrect (because a volume moved to a different server), the server forwards the 
request. This provides AFS with migration transparence: volumes may be moved between servers 
without disrupting access. 

Communication in AFS is with RPCs via UDP. Access control lists are used for protection; UNIX 
file permissions are ignored.  The granularity of access control is directory based; the access rights 
apply to all files in the directory. Users may be members of groups and access rights specified for a 
group. Kerberos is used for authentication. 

Cache coherence 

The server copies a file to the client and provides a callback promise: it will notify the 
client when any other process modifies the file. 

When a server gets an update from a client, it notifies all the clients by sending a callback   
(via RPC). Each client that receives the callback then invalidates the cached file.  If a client that 
had a file cached was down, on restart, it contacts the server with the timestamps of each cached file 
to decide whether to invalidate the file. Note that if an process as a file open, it can continue using 
it, even if it has been invalidated in the cache. Upon close, the contents will still be propagated to 
the server. There is no further mechanism for coherency. AFS abides by session semantics. 

Under AFS, read-only files may be replicated on multiple servers. 
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Whole file caching isn't feasible for very large files, so AFS caches files in 64K byte chunks 
(by default) and directories in their entirety.  File modifications are propagated only on close.  
Directory modifications are propagated immediately. 

AFS does not support byte-range file locking. Advisory file locking (query to see whether a file 
has a lock on it) is supported. 

AFS Summary 

AFS demonstrates that whole file (or large chunk) caching offers dramatically reduced loads 
on servers, creating an environment that scales well. The AFS file system provides a uniform name 
space from all workstations, unlike NFS, where the client mount each NFS file system at a client-
specific location (the name space is uniform only under the /afs directory, however). Establishing 
the same view of the file name space from each client is easier than with NFS. This enables users to 
move to different workstations and see the same view of the file system. 

Access permission is handled through control lists per directory, but there is no per-file 
access control. Workstation/user authentication is performed via the Kerberos authentication 
protocol using a trusted third party (more on this in the security section). 

A limited form of replication is supported. Replicating read-only (and read-mostly at your 
own risk) files can alleviate some performance bottlenecks for commonly accessed files (e.g. 
password files, system binaries). 

Coda 

Coda is a descendent of AFS, also created at CMU (c. 1990-1992). Its goals are: 
- Provide better support for replication of file volumes than offered by AFS. AFS’ limited 

form (read-only volumes) of replication will be a limiting factor in scaling the system. 
We would like to support widely shared read/write files, such as those found in bulletin-
board systems. 

- Provide constant data availability in disconnected environments through hoarding 
(user-directed caching). This requires logging updates on the client and reintegration 
when the client is reconnected to the network. Such a scheme will support the mobility 
of PCs. 

- Improve fault tolerance. Failed servers and network problems shouldn't seriously 
inconvenience users. 

 
To achieve these goals, AFS was modified in two substantial ways: 

1. File volumes can be replicated to achieve higher throughput of file access operations 
and improve fault tolerance. 

2. The caching mechanism was extended to enable disconnected clients to operate. 
 

Volumes can be replicated to group of servers. The set of servers that can host a particular 
volume is the volume storage group (VSG) for that volume. In identifying files and directories, a 
client no longer uses a volume ID as AFS did, but instead uses a replicated volume ID. The client 
performs a one-time lookup to map the replicated volume ID to a list of servers and local volume 
IDs. This list is cached for efficiency. Read operations can take place from any of these servers to 
distribute the load. A write operation has to be multicast to all available servers. Since some servers 
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may be inaccessible at a particular point in time, a client may be able to access only a subset of the 
VSG. This subset is known as the Available Volume Storage Group, or AVSG. 

Since some volume servers may be inaccessible, special treatment is needed to ensure that 
clients do not read obsolete data. Each file copy has a version stamp. Before fetching a file, a client 
requests version stamps for that file from all available servers. If some servers are found to have old 
versions, the client initiates a resolution process which tries to automatically resolve differences 
(administrative intervention may be required if the process finds problems that it cannot fix). 
Resolution is only initiated by the client. The process is handled entirely by the servers. 

Disconnected operation 

If a client’s AVSG is empty, then the client is operating in a disconnected operation mode. If 
a file is not cached locally and is needed, nothing can be done: the system simply retries access and 
fails. For writes, however, the client does not report a failure of an update. Instead, the client logs 
the update locally in a Client Modification Log (CML). The user is oblivious to this. On 
reconnection, a process of reintegration with the server(s) commences to bring the server up to 
date. The CML is played back (the log playback is optimized so that only the latest changes are 
sent). The system tries to resolve conflicts automatically. This is not always possible (for example, 
someone may have modified the same parts of the file on a server while our client was 
disconnected). In cases where conflicts arise, user intervention is required to reconcile the 
differences. 

To further support disconnected operation, it is desirable to cache all the files that will be 
needed for work to proceed when disconnected and keep them up to date even if they are not being 
actively used. To do this, Coda supports a hoard database that contains a list of these “important” 
files. The hoard database is constructed both by monitoring a user’s file activity and allowing a user 
to explicitly specify files and directories that should be present on the client. The client frequently 
asks the server to send updates if necessary (that is, when it receives a callback). 

Distributed File System (DFS) 

DFS is the file system that is part of the Open Group’s (formerly the Open Software 
Foundation or OSF) Distributed Computing Environment (DCE) and is a direct descendant of AFS. 
Like AFS, it assumes that: 

• most file accesses are sequential 
• most file lifetimes are short 
• the majority of accesses are whole-file transfers 
• the majority of accesses are to small files 

 
With these assumptions, the conclusion is that file caching can reduce network traffic and 

server load. Since the studies on file usage in the early and mid 1980's, it was noticed that file 
throughput per user has increased dramatically and that typical file sizes became much larger. 

DFS implements a strong consistency model (unlike AFS) with Unix semantics supported. 
This means that a read will return the effects of all writes that precede it.  Cache consistency under 
DFS is maintained by the use of tokens. 

A token is a guarantee from the server that a client can perform certain operations on the 
cached file. The server will revoke a token if another client attempts a conflicting operation. A 
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server grants and revokes tokens. It will grant any number of read tokens to clients but as soon as 
one client requests write access, the server will revoke all outstanding read and write  tokens and 
issue a single write token to the requestor. This token scheme makes long term caching possible (it 
is not under NFS). Caching is in units of chunk sizes that range from 8K to 256K bytes.  Caching is 
both in client memory and on the disk. DFS also employs read-ahead (similar to NFS) to attempt to 
bring additional chunks off the file to the client before they are needed. 

DFS is integrated with DCE security services. File protection is via access control lists (ACL) 
and all communication between client and server is via authenticated remote procedure calls. 

Server Message Block (SMB) 

SMB is a protocol for sharing files, devices, and communication abstractions (such as named 
pipes or mailslots). It was created by Microsoft and Intel in 1987 and evolved over the years. 

SMB is a client-server request-response protocol. Servers make file systems and other 
resources available to clients and clients access the shared file systems (and printers …) from the 
servers. The protocol is connection-oriented and requires either Microsoft’s IPX/SPX or NetBIOS4 
over either TCP/IP or NetBEUI. A typical session proceeds as follows: 

1. client sends a negprot SMB to the server. This is a protocol negotiation request. 
2. the server respons with a version number of the protocol (and version-specific 

information, such as a maximum buffer size and naming information). 
3. the client logs on (if required) by sending a sesssetupX SMB, which includes a username 

and password. It receives an acknowledgement or failure from the server. If successful, 
the server sends back a user ID (UID) of the logged-on user. This UID must be submitted 
with future requests. 

4. The client can now connect to a tree. It sends a tcon (or tconX) SMB with the network 
name of the shared resource to request access to the resource. The server responds with a 
tree identifier (TID) that the client will use for all future requests for that resource. 

5. Now the client can send open, read, write, close SMBs. 
Machine naming is restricted to 15-character NetBIOS names if NetBEUI or TCP/IP are used. 

Since SMB was designed to operate in a small local-area network, clients find out about resources 
either by being configured to know about the servers in their environment or by having each server 
periodically broadcast information about its presence. Clients would listen for these broadcasts and 
build lists of servers. This is fine in a LAN environment but does not scale to wide-area networks 
(e.g. a TCP/IP environment with multiple subnets or networks). To combat this deficiency, 
Microsoft introduced browse serversand the Windows Internet Name Service (WINS). 

The SMB security model has two levels: 

1. Share level Protection is applied per “share” (resource). Each share can have a 
password. The client needs to know that password to be able to access 
all files under that share. This was the only security model in early 
versions of SMB and is the default under Windows 95. 

2. User level Protection is applied to individual files in each share based on user 
access rights. A user (client) must log into a server and be 
authenticated. The client is then provided with a UID which must be 

                                                               
4 See RFC 1001, 1002 for a description of this protocol. 
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presented for all future accesses. 

 
Microsoft, Compaq, SCO, and a number of other companies are currently developing a public 

version of the SMB protocol, called CIFS (Common Internet File System). 

Common Internet File System (CIFS) 

CIFS is an evolutionary step from SMB and attempts to provide a distributed file system that 
allows heterogeneous hardware and operating systems (as opposed to the Microsoft and Intel-centric 
SMB) to request file services over a network. It is based on the server message block protocol and 
draws from concepts in AFS and DFS). 

CIFS supports: 
- shared files 
- byte-range locking 
- coherent caching 
- change notification 
- replicated storage 
- Unicode file names 

For load sharing, replicated virtual volumes are supported. They appear as one volume from 
one server to the client but, in reality, may span multiple volumes and servers. Components can be 
moved to different servers without changing their name. To accomplish this, referrals are used as in 
AFS (a client request is redirected to the server that currently stores that data). 

To support wide-area (slow) networks, CIFS allows multiple requests to be combined into a 
single message to minimize round-trip latencies. 

CIFS is transport-independent but requires a reliable connection-oriented message-stream 
transport. Sharing is in units of directory trees or individual devices. For access, the client sends 
authentication information to the server (name and password). The granularity of authorization is 
up to the server (e.g. individual files or an entire directory tree). 

The caching mechanism is one of the more interesting aspects of CIFS. It is well-understood 
that network load is reduced if the amount of times that the client informs the server of changes is 
minimized. This also minimizes the load on servers. An extreme optimization leads to session 
semantics. Since a goal in CIFS is to provide coherent caching (UNIX semantics), the realization is 
that client caching is safe if any number of clients are reading data. Read-ahead operations 
(prefetch) are also safe as long as other clients are only reading the file. Write-behind (delayed 
writes) is safe only if a single client is accessing the file. None of these optimizations is safe if 
multiple clients are writing the file. In that case, operations will have to go directly to the server. 

To support this behavior, the server grants opportunist ic locks (oplocks) to a client for each 
file that it is accessing. This is a slight refinement of the token granting scheme used in DFS. An 
oplock takes one of the following forms: 

exclusive 
oplock 

tells the client that it is the only one with the file open (for write). Local 
caching , read-ahead, and write-behind are allowed. The server must 
receive an update upon file close. If someone else opens the file, the server 
has the previous client break its oplock. The client must send the server 
any lock and write data and acknowledge that it no longer has the lock. 
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level II oplock allows multiple clients to have the same file open as long as none are 
writeing to the file. It tells the client that there are multiple concurrent 
clients, none of whom have modified the file (read access). Local caching 
of reads as well as read-ahead are allowed. All other operations must be 
sent directly to the server. 

batch oplock allows the client to keep the file open on the server even if a local process 
that was using it has closed the file. A client requests a batch oplock if it 
expects that programs may behave in a way that generates a lot of traffic 
(accessing the same file over and over). This oplock tells the client that it 
is the only one with the file open. All operations may be done on cached 
data and data may be cached indefinitely. 

no oplocks tells the client that other clients may be writing data to the file: all 
requests other than reads must be sent to the server. Read operations may 
work from a local cache only if the byte range was locked by the client. 

The server has the right to asynchronously send a message to the client changing the oplock. 
For example, a client may be granted an exclusive oplock initially since nobody else was accessing 
the file. Later on, when another client opened the same file for read, the oplock was changed to a 
level II oplock. When another client opened the file for writing, both of the earlier clients were sent 
a message revoking their oplocks. 
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