
Rutgers University – CS 417: Distributed Systems
©2000-2009 Paul Krzyzanowski 1

Lectures on distributed systems

Clock Synchronization
Paul Krzyzanowski

When Charles V retired in weariness from the greatest throne in
the world to the sol i tude of the monastery at Yuste, he occupied
his l ei sure for some weeks trying to regulate two clocks. It proved
very di f f i cul t. One day, i t i s recorded, he turned to his assi stant
and said: “To think that I attempted to force the reason and co n-
science of thousands of men into one mould, and I cannot make
two clocks agree!”

Havelock El l i s,
The Task of Social Hygiene, Chapter 9

Introduction

Clock synchronization deals with understanding the temporal ordering of
events produced by concurrent processes. It is useful for synchronizing senders
and receivers of messages, controlling joint activity, and the serializing concur-
rent access to shared objects. The goal is that multiple unrelated processes run-
ning on different machines should be in agreement with and be able to make
consistent decisions about the ordering of events in a system.

For these kinds of events, we introduce the concept of a logical clock, one where
the clock need not have any bearing on the time of day but rather be able to cre-
ate event sequence numbers that can be used for comparing sets of events, such
as a messages, within a distributed system.

Another aspect of clock synchronization deals with synchronizing time-of-day
clocks among groups of machines. In this case, we want to ensure that all ma-
chines can report the same time, regardless of how imprecise their clocks may
be or what the network latencies are between the machines.

A consistent view of time

The common-sense reaction to making time-based decisions is to rely upon a
time-of-day clock. Most computers have them and it would seem to be a simple
matter to throw on a time-of-day timestamp to any message or other event
where we would need to mark its time and possibly compare it with the time of
other events. This method is known as global time ordering.

There are a couple of problems with this approach. The first is that that we have
no assurance that clocks on different machines are synchronized. If machine A
generates a message at 4:15:00 and machine B generates a message at 4:15:20, it’s
quite possible that machine B’s message was generated prior to that of machine
A if B’s clock was over 20 seconds too fast. Even if we synchronize periodically,

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
© 2000-2009 Paul Krzyzanowski 2

it’s quite possible (even likely) that the clocks may run at different speeds and
drift apart to report different times.

The second problem is that two events on two different systems may actually
occur at exactly the same time (to the precision of the clock, at least) and thus be
tagged with identical timestamps. If we have algorithms that compare messages
to pick one over another and rely on them coming up with the same answer on
all systems, we have a problem as there will be no unique way to select one
message over another consistently

Logical clocks

Let’s again consider cases that involve assigning sequence numbers (“time-
stamps”) to events upon which all cooperating processes can agree. What mat-
ters in these cases is not the time of day at which the event occurred but that all
processes can agree on the order in which related events occur. Our interest is in
getting event sequence numbers that make sense system-wide. These clocks are
called logical clocks.

If we can do this across all events in the system, we have something called total
ordering: every event is assigned a unique timestamp (number), every such time-
stamp is unique.

However, we don’t always need total ordering. If processes do not interact then
we don’t care when their events occur. If we only care about assigning time-
stamps to related (causal) events then we have something known as partial order-
ing.

Leslie Lamport developed a “happens before” notation to express the relation-
ship between events: a→b means that a happens before b. If a represents the
timestamp of a message sent and b is the timestamp of that message being re-
ceived, then a→b must be true; a message cannot be received before it is sent.
This relationship is transitive. If a→b and b→c then a→c. If a and b are events
that take place in the same process the a→b is true if a occurs before b.

The importance of measuring logical time is in assigning a time value to each
event such that everyone will agree on
the final order of events. That is, if a→b
then clock(a) < clock(b) since the clock
(our timestamp generator) must never
run backwards. If a and b occur on dif-
ferent processes that do not exchange
messages (even through third parties)
then a→b is not true. These events are
said to be concurrent: there is no way
that a could have influenced b.

Consider the sequence of events de-
picted in Figure 1 taking place between

Figure 1. Unsequenced event stamps

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
© 2000-2009 Paul Krzyzanowski 3

three processes. Each event is assigned a timestamp by its respective process.
The process simply maintains a global counter that is incremented before each
event gets a timestamp.

If we examine the timestamps from our global perspective, we can observe a
number of peculiarities. Event g, the event representing the receipt of the mes-
sage sent by event a, has the exact same timestamp as event a when it clearly
had to take place after event a. Event e has an earlier time stamp (1) than the
event that sent the message (b, with a timestamp of 2).

Lamport’s algorithm remedies the situation by forcing a resequencing of time-
stamps to ensure that the happens before relationship is properly depicted for
events related to sending and receiving messages. It works as follows:

Each process has a clock, which can be a simple counter that
is incremented for each event.

The sending of a message is an event and each message car-
ries with it a timestamp obtained from the current value of
the clock at that process (sequence number).

The arrival of a message at a process is also an event will also
receive a timestamp – by the receiving process, of course. The
process’ clock is incremented prior to timestamping the
event, as it would be for any other event. If the clock value is
less than the timestamp in the received message, the system’s
clock is adjusted to the (message’s timestamp + 1). Otherwise
nothing is done. The event is now timestamped.

If we apply this algorithm to the same sequence of messages, we can see that
proper message ordering among causally related events is now preserved (Fig-
ure 2). Note that between every two events, the clock must tick at least once.

Lamport's algorithm allows us to maintain proper time ordering among caus-
ally-related events. In summary, Lamport’s algorithm requires a monotonically
increasing software counter for a “clock” that has to be incremented at least
when events that need to be time-
stamped take place. These events
will have the clock value, or “Lam-
port timestamp,” associated with
them. For any two events, where
a→b, L(a) < L(b) where L(x) repre-
sents the Lamport timestamp for
event x.

Lamport timestamps assure us that
if there is a causal relationship be-
tween two events, then the earlier
event will have a smaller time-

e

f

Figure 2. Lamport sequenced event stamps

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
© 2000-2009 Paul Krzyzanowski 4

stamp than the later event. Causality is achieved by successive events on one
process or by the sending and receipt of messages on different processes. As de-
fined by the happened-before relationship, causality is transitive. For instance,
events a and f are causally related in Figure 2 (through the sequence a, b, e, f).

Total ordering
Note that it is very possible for multiple non-causal (concurrent) events to share
identical Lamport timestamps (e.g., c, e, and h in Figure 2). This may cause con-
fusion if multiple processes need to make a decision based on the timestamps of
two events. The selection of a specific event may not matter if the events are
concurrent but we want all the processes to be able to make the same decision.
This is difficult if the timestamps are identical. Fortunately, there’s an easy rem-
edy.

We can create a total order on events by further qualifying them with identities
of processes. We define a global logical timestamp (Ti,i) where Ti represents the
local Lamport timestamp and i represents the process ID (in some globally
unique way: for example, a concatenation of host address and process ID). We
are then able to globally compare these timestamps and conclude that

(Ti,i) < (Tj,j)

 if and only if

Ti < Tj

or Ti = Tj and i < j.

There is no physical significance to the
order since process identifiers can be
arbitrary and do not relate to event or-
dering but the ability to ensure that no
two Lamport timestamps are the same
globally is helpful in algorithms that
need to compare these timestamps.
Figure 3 shows an example with a suf-
fix of the process ID added to each
timestamp. In real life, depending on
the application, one may use a combi-
nation of thread ID, process ID, and IP
address as a qualifier to the timestamp.

Vector clocks: identifying concurrent events
If two events are causally related and event e happened before event e’ then we
know that L(e) < L(e’). However, the converse is not necessarily true. With Lam-
port’s algorithm, if L(e) < L(e’) we cannot conclude that e→e’. Hence, if we look
at Lamport timestamps, we cannot conclude which pairs of events are causally
related and which are not. One solution that has been proposed to deal with this

Figure 3. Totally ordered Lamport timestamps

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
© 2000-2009 Paul Krzyzanowski 5

Figure 4. Messages with vector timestamps

problem is the concept of vector clocks (proposed by Mattern in 1989 and Fridge
in 1991).

A vector clock in a system of N processes is a vector of N integers. Each process
maintains its own vector clock (Vi for a process Pi) to timestamp local events.
Like Lamport timestamps, vector timestamps (the vector of N integers) are sent
with each message. The rules for using vector clocks are:

1. The vector is initialized to 0 at all processes:
 Vi[j] = 0 for i,j = 1, …, N

2. Before a process Pi timestamps an event, it increments its element of the
vector in its local vector:
 Vi[i] = Vi[i]+1

3. A message is sent from process Pi with Vi attached to the message.

4. When a process Pj receives a vector timestamp t, it compares the two
vectors element by element, setting its local vector clock to the higher of
the two values:
 Vj[i] = max(Vj[i], t[i]) for i=1, …, N

We compare two vector timestamps by defining:

 V = V’ iff V[j] = V’[j] for i=1, …, N

 V ≤ V’ iff V[j] ≤ V’[j] for i=1, …, N

For any two events e, e’, if e→e’ then V(e) < V(e’). This is the same as we get
from Lamport’s algorithm. With vector clocks, we now have the additional
knowledge that if V(e) <V(e’) then e→e’. Two events e, e’ are concurrent if neither
V(e) ≤ V(e’) nor V(e’) ≤ V(e).

The disadvantage with vector clocks is the greater storage and message payload
size, since an entire vector rather than a single integer must be manipulated. We
can examine the events in Figure 4 with vector clocks and see how events a and
e can be determined to be concurrent by com-
paring their vector timestamps. If we do an
element-by-element comparison, we see that
each element in one timestamp is not
consistently less than or equal to its
corresponding element in the second
timestamp. For example, element 1 is greater
in a than it is in e (1>0) but element 3 in a is
less it is in e (0<1).

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
© 2000-2009 Paul Krzyzanowski 6

clock
B

clock
A

skew = 4 seconds

Figure 5. Clock drift and clock skew

Physical clocks

Most computers today keep track of the passage of time with a battery-backed-
up CMOS clock circuit, driven by a quartz resonator. This allows the timekeep-
ing to take place even if the machine is powered off. When on, an operating sys-
tem will generally program a timer circuit (a Programmable Interval Timer, or
PIT, in older Intel architectures and Advanced Programmable Interrupt Control-
ler, or APIC, in newer systems.) to generate an interrupt periodically (common
times are 60 or 100 times per second). The interrupt service procedure simply
adds one to a counter in memory.

While the best quartz resonators can achieve an accuracy of one second in 10
years, they are sensitive to changes in temperature and acceleration and their
resonating frequency can change as they age. Standard resonators are accurate
to 6 parts per million at 31°
C, which corresponds to
±½ second per day.

The problem with maintain-
ing a concept of time is when
multiple entities expect each
other to have the same idea
of what the time is. Two
watches hardly ever agree.
Computers have the same
problem: a quartz crystal on
one computer will oscillate
at a slightly different fre-
quency than on another
computer, causing the clocks
to tick at different rates. The
phenomenon of clocks tick-
ing at different rates, creat-
ing a ever widening gap in perceived time is known as clock drift. The difference
between two clocks at any point in time is called clock skew and is due to both
clock drift and the possibility that the clocks may have been set differently on
different machines. Figure 5 illustrates this phenomenon with two clocks, A and
B, where clock B runs slightly faster than clock A by approximately two seconds
per hour. This is the clock drift of B relative to A. At one point in time (five sec-
onds past five o'clock according to A's clock), the difference in time between the
two clocks is approximately four seconds. This is the clock skew at that particu-
lar time.

Compensating for drift

We can envision clock drift graphically by considering true (UTC) time flowing
on the x-axis and the corresponding computer’s clock reading on the y-axis. A
perfectly accurate clock will exhibit a slope of one. A faster clock will create a
slope greater than unity while a slower clock will create a slope less than unity.

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
© 2000-2009 Paul Krzyzanowski 7

Suppose that we have a means of obtaining the true time. One easy (and fre-
quently adopted) solution is to simply update the system time to the true time.
To complicate matters, one constraint that we’ll impose is that it’s not a good
idea to set the clock back. The illusion of time moving backwards can confuse
message ordering and software development environments.

If a clock is fast, it simply has to be made to run slower until it synchronizes. If
a clock is slow, the same method can be applied and the clock can be made to
run faster until it synchronizes. The operating system can do this by changing
the rate at which it requests interrupts. For example, suppose the system re-
quests an interrupt every 17 milliseconds (pseudo-milliseconds, really – the
computer’s idea of what a
millisecond is) and the clock
runs a bit too slowly. The
system can request inter-
rupts at a faster rate, say
every 16 or 15 milliseconds,
until the clock catches up.
This adjustment changes the
slope of the system time and
is known as a linear compen-
sating function (Figure 6). Af-
ter the synchronization pe-
riod is reached, one can
choose to resynchronize pe-
riodically and/or keep track
of these adjustments and ap-
ply them continually to get a
better running clock. This is
analogous to noticing that
your watch loses a minute
every two months and mak-
ing a mental note to adjust the clock by that amount every two months (except
the system does it continually). For an example of clock adjustment, see the
UNIX System V man page for adjtime.

Setting the time on physical clocks

With physical clocks, our interest is not in advancing them just to ensure proper
message ordering, but to have the system clock keep good time. We looked at
methods for adjusting the clock to compensate for skew and drift, but it is es-
sential that we get the time first so that we would know what to adjust.

One possibility is to attach a GPS (Global Positioning System) receiver to each
computer. A GPS receiver will provide time within ± 1 msec. of UTC time and
can be had for under US $40. Unfortunately, they rarely work indoors. Alterna-
tively, if the machine is in the U.S., one can attach a WWV radio receiver to ob-
tain time broadcasts from Boulder, Colorado or Washington, DC, giving accura-
cies of ± 3–10 msec., depending on the distance from the source. Another option

UTC time, t

Sy
ste

m
 c

lo
ck

, C

ideal clock, dC/dt = 1

linear compensating
function applied

a b

fast clock, dC/dt > 1

skew

Figure 6. Compensating for drift with a linear compensat-
ing function

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
© 2000-2009 Paul Krzyzanowski 8

2
01 TTTT servernew

−
+=

is to obtain a GOES (Geostationary Operational Environment Satellites) receiver,
which will provide time within ± 0.1 msec. of UTC time. For reasons of econ-
omy, convenience, and reception, these are not practical solutions for every ma-
chine. Most machines will set their time by asking another machine for the time
(preferably one with one of the aforementioned time sources). A machine that
provides this information is called a time server.

Cristianʼs algorithm

The simplest algorithm for setting the time would be to simply issue a remote
procedure call to a time server and obtain the time. That does not account for
the network and processing delay. We can attempt to compensate for this by
measuring the time (in local system time) at which the request is sent (T0) and
the time at which the response is received (T1). Our best guess at the network
delay in each direction is to assume that the delays to and from are symmetric
(we have no reason to believe otherwise). The estimated overhead due to the
network delay is then (T1- T0)/2. The new time can be set to the time returned by
the server plus the time that elapsed since the server generated the timestamp:

Suppose that we know the smallest time interval that it could take for a message
to be sent between a client and server (either direction). Let's call this time Tmin.
This is the time when the network and CPUs are completely unloaded. Knowing
this value allows us to place bounds on the accuracy of the result obtained from
the server. If we sent a request to the server at time T0, then the earliest time
stamp that the server could generate the timestamp is T0 + Tmin. The latest time
that the server could generate the timestamp is T1 - Tmin, where we assume it
took only the minimum time, Tmin, to get the response. The range of these times
is: T1 - T0 - 2Tmin, so the accuracy of the result is:

Errors are cumulative. If machine A synchronizes from a server B and gets an
accuracy of ±5 msec but server B in turn got its time from server C with an accu-
racy of ±7 msec, the net accuracy at machine A is ±(5+7), or ±12 msec.

Several time requests may be issued consecutively in the hope that one of the
requests may be delivered faster than the others (e.g., it may be submitted dur-
ing a time window when network activity is minimal). This can achieve im-
proved accuracy.

Cristian's algorithm suffers from the problem that afflicts all single-server algo-
rithms: the server might fail and clock synchronization will be unavailable. It is
also subject to malicious interference.

€

±
T1 −T0
2

−Tmin

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
© 2000-2009 Paul Krzyzanowski 9

Berkeley algorithm

The Berkeley algorithm, developed by Gusella and Zatti in 1989, does not as-
sume that any machine has an accurate time source with which to synchronize.
Instead, it opts for obtaining an average time from the participating computers
and synchronizing all machines to that average.

The machines involved in the synchronization each run a time dæmon process
that is responsible for implementing the protocol. One of these machines is
elected (or designated) to be the master. The others are slaves. The server polls
each machine periodically, asking it for the time. The time at each machine may
be estimated by using Cristian's method to account for network delays. When all
the results are in, the master computes the average time (including its own time
in the calculation). The hope is that the average cancels out the individual
clock's tendencies to run fast or slow.

Instead of sending the updated time back to the slaves, which would introduce
further uncertainty due to
network delays, it sends each
machine the offset by which its
clock needs adjustment. The
operation of this algorithm is
illustrated in Figure 7. Three
machines have times of 3:00, 3:25,
and 2:50. The machine with the
time of 3:00 is the server (master).
It sends out a synchronization
query to the other machines in the group. Each of these machines sends a time-
stamp as a response to the query. The server now averages the three time-
stamps: the two it received and its own, computing (3:00+3:25+2:50)/3 = 3:05.
Now it sends an offset to each machine so that the machine's time will be syn-
chronized to the average once the offset is applied. The machine with a time of
3:25 gets sent an offset of -0:20 and the machine with a time of 2:50 gets an offset
of +0:15. The server has to adjust its own time by +0:05.

The algorithm also has provisions to ignore readings from clocks whose skew is
too great. The master may compute a fault-tolerant average – averaging values
from machines whose clocks have not drifted by more than a certain amount. If
the master machine fails, any other slave could be elected to take over.

Network Time Protocol (NTP)

The Network Time Protocol [1991, 1992] is an Internet standard (version 3, RFC
1305) whose goals are to:

- Enable clients across the Internet to be accurately synchronized to UTC
(universal coordinated time) despite message delays. Statistical tech-
niques are used for filtering data and gauging the quality of the results.

3:00

3:25 2:50

time?time?

3:25 2:50

3:25 2:50

+0:15-0:20 3:00

+0:05
server server

Figure 7. Berkeley synchronization algorithm

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
© 2000-2009 Paul Krzyzanowski 10

- Provide a reliable service that can survive lengthy losses of connec-
tivity. This means having redundant paths and redundant servers.

- Enable clients to synchronize frequently and offset the effects of clock
drift.

- Provide protection against interference; authenticate that the data is
from a trusted source.

The NTP servers are arranged into strata.
The first stratum contains the primary
servers, which are machines that are
connected directly to an accurate time
source. The second stratum contains the
secondary servers. These machines are
synchronized from the primary stratum
machines. The third stratum contains terti-
ary servers that are synchronized from the secondaries, and so on. Together, all
these servers form the synchronization subnet (Figure 8).

A machine will often try to synchronize with several servers, using the best of
all the results to set its time. The best result is a function of a number of quali-
ties, including: round-trip delay, consistency of the delay, round-trip error,
server’s stratum, the accuracy of the server’s clock, the last time the server’s
clock was synchronized, and the estimated drift on the server.

Because a system may synchronize with multiple servers, its stratum is dy-
namic: it is based on the server used for the latest synchronization. If you syn-
chronized from a secondary NTP server then you are in the third stratum. If,
next time, you used a primary NTP server to synchronize, you are now in the
second stratum.

Machines synchronize in one of the following modes:

- symmetric active mode: a host sends periodic messages regardless of the
reachability state or stratum of its peer

- symmetric passive: this mode is created when a system receives a mes-
sage from a peer operating in symmetric active mode and persists as
long as the peer is reachable and operating at a stratum less than or
equal to the host. This is a mode where the host announces its willing-
ness to synchronize and be synchronized by the peer. This mode offers
the highest accuracy and is intended for use by master servers. A pair
of servers exchanges messages with each other containing timing in-
formation. Timing data are retained to improve accuracy in
synchronization over time.

time source

stratum 1

stratum 2

stratum 3

Figure 8. NTP synchronization subnet

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
© 2000-2009 Paul Krzyzanowski 11

- procedure call mode: similar to Cristian’s algorithm; a client announces
its willingness to by synchronized by the server, but not to synchronize
the server.

- multicast mode: intended for high speed LANs; relatively low accuracy
but fine for many applications.

All messages are delivered unreliably via UDP. In both the procedure call mode
and symmetric mode, messages are exchanged in pairs. Each message has the
following timestamps:

 Ti-3: local time when previous NTP message was sent.

 Ti-2: local time when previous NTP message was received.

 Ti-1: local time when current NTP message was sent.

The server notes its local time, Ti. For each pair, NTP calculates the offset (esti-
mate of the actual offset between two clocks) and delay (total transit time for
two messages). In the end, a process determines three products:

1. Clock offset: this is the amount that the local clock needs to be adjusted
to have it correspond to a reference clock.

2. Roundtrip delay: this provides the client with the capability to launch a
message to arrive at the reference clock at a particular time; it gives us
a measure of the transit time of the mesge to a particular time server.

3. Dispersion: this is the “quality of estimate” (also known as filter disper-
sion) based on the accuracy of the server’s clock and the consistency of
the network transit times. It represents the maximum error of the local
clock relative to the reference clock.

By performing several NTP exchanges with several servers, a process can de-
termine which server to favor. The preferred ones are those with a lower stra-
tum and the lowest total filter dispersion. A higher stratum (less accurate) time
source may be chosen if the communication to the more accurate servers is less
predictable.

The Simple Network Time Protocol, SNTP (RFC 2030), is an adaptation of the Net-
work Time Protocol that allows operation in a stateless remote procedure call
mode or multicast mode. It is intended for environments when the full NTP im-
plementation is not needed or is not justified. The intention is that SNTP be
used at the ends of the synchronization subnet (high strata) rather than for syn-
chronizing time servers.

SNTP can operate in either a unicast, multicast, or anycast modes:

- in unicast mode, a client sends a request to a designated server

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
© 2000-2009 Paul Krzyzanowski 12

- in multicast mode, a server periodically sends a broadcast or multicast
message and expects no requests from clients

- in anycast mode, a client sends a request to a local broadcast or multi-
cast address and takes the first response received by responding serv-
ers. From then on, the protocol proceeds as in unicast mode1.

NTP and SNTP messages are both sent via UDP (there is no point in having time
reports delayed by possible TCP retransmissions). The message structure con-
tains:

Leap indicator warns of impending leap second (last minute has either
59, 60, or 61 seconds)

Version number

Mode symmetric active, symmetric passive, client, server,
broadcast

Stratum stratum

Poll interval maximum interval between successive messages (power
of 2)

Precision 8-bit signed integer indicating the precision of the local
clock, seconds to nearest power of two

Root delay 32-bit number indicating total roundtrip delay to pri-
mary reference source (16 bit seconds, and 16 bits of
decimal seconds)

Root dispersion 32-bit number indicating the nominal error relative to
the primary reference source

Reference identifier identify the reference source – four character ASCII
string. Possible sources are: local uncalibrated clock,
atomic clock, NIST dial-up modem service, USNO modem
service, PTB (Germany) dial-up modem service, Allouis
(France) radio, Boulder (CO, USA) radio, LORAN-C radi-
onavigation system, Global Positioning System (GPS),
Geostationary Orbit Environment Satellite(GOES), & cet-
era.

Reference timestamp
(64 bits)

time at which local clock was last set or corrected

Originate timestamp
(64 bits)

time at which request departed the client for the server

Receive timestamp
(64 bits)

time at which the request arrived at the server

1 This is a somewhat different definition of anycast than that used in IPv6.

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
© 2000-2009 Paul Krzyzanowski 13

Transmit timestamp
(64 bits)

time at which the reply departed the server

Key identifier (32 bits) used if the NTP authentication scheme is implemented

Message digest
(128 bits)

used if the NTP authentication scheme is implemented

In unicast mode, the roundtrip delay and local offset are calculated as follows
(from RFC2030):

1. The client sets the transmit timestamp in the request to the time of
day according to the client clock. (T1).

2. The server copies this field to the originate timestamp in the reply and
sets the receive timestamp and transmit timestamps to the time of day
according to the server clock (T2, T3).

3. When the server reply is received, the client determines a destination
timestamp as the time of arrival according to its clock (T4).

Timestamp name ID when generated

originate timestamp T1 time request sent by client

receive timestamp T2 time request received by
server

transmit timestamp T3 time reply sent by server

destination timestamp T4 time reply received by client

The roundtrip delay d is defined as:

 d = (T4 – T1) – (T2 – T3)

Note that the delay estimates the time spent sending and receiving data over the
network, and subtracts out the processing delay at the server. The local clock
offset t is defined as:

t = ((T2 – T1) + (T3 – T4)) / 2

The client, after computing this offset, adds this amount to its clock.

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
© 2000-2009 Paul Krzyzanowski 14

References

Time, Clocks, and the Ordering of Events in a Distributed System, Leslie Lamport,
Communications of the ACM, July 1978, Volume 21, Number 7, pp. 558-565.

Distributed Systems: Concepts and Design, G. Coulouris, J. Dollimore, T. Kindberg,
©1996 Addison Wesley Longman, Ltd.

Distributed Operating Systems, Andrew Tanenbaum, © 1995 Prentice Hall.

Modern Operating Systems, Andrew Tanenbaum, ©1992 Prentice Hall.

RFC1305: Network Time Protocol version 3. This can be found in many locations.
One place is http://www.faqs.org/rfcs/rfc1305.html

RFC 2030: Simple Network Time Protocol version 4. This can be found in many
places. One place is http://www.faqs.org/rfcs/rfc2030.html

