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Lectures on distributed systems 

Clock Synchronization 
Paul Krzyzanowski 

When Charles V  retired in weariness from the greatest throne in 
the world to  the sol i tude of  the monastery at Yuste, he occupied 
his l ei sure for  some weeks trying to  regulate two clocks. It proved 
very di f f i cul t. One day, i t i s recorded, he turned to  his assi stant 
and said: “To think that I attempted to  force the reason and co n-
science of  thousands of  men into  one mould, and I cannot make 
two clocks agree!” 

Havelock El l i s, 
The Task of  Social  Hygiene, Chapter  9 

Introduction 

Clock synchronization deals with understanding the temporal ordering of 
events produced by concurrent processes. It is useful for synchronizing senders 
and receivers of messages, controlling joint activity, and the serializing concur-
rent access to shared objects. The goal is that multiple unrelated processes run-
ning on different machines should be in agreement with and be able to make 
consistent decisions about the ordering of events in a system. 

For these kinds of events, we introduce the concept of a logical clock, one where 
the clock need not have any bearing on the time of day but rather be able to cre-
ate event sequence numbers that can be used for comparing sets of events, such 
as a messages, within a distributed system. 

Another aspect of clock synchronization deals with synchronizing time-of-day 
clocks among groups of machines. In this case, we want to ensure that all ma-
chines can report the same time, regardless of how imprecise their clocks may 
be or what the network latencies are between the machines. 

A consistent view of time 

The common-sense reaction to making time-based decisions is to rely upon a 
time-of-day clock. Most computers have them and it would seem to be a simple 
matter to throw on a time-of-day timestamp to any message or other event 
where we would need to mark its time and possibly compare it with the time of 
other events. This method is known as global time ordering.  

There are a couple of problems with this approach. The first is that that we have 
no assurance that clocks on different machines are synchronized. If machine A 
generates a message at 4:15:00 and machine B generates a message at 4:15:20, it’s 
quite possible that machine B’s message was generated prior to that of machine 
A if B’s clock was over 20 seconds too fast. Even if we synchronize periodically, 
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it’s quite possible (even likely) that the clocks may run at different speeds and 
drift apart to report different times. 

The second problem is that two events on two different systems may actually 
occur at exactly the same time (to the precision of the clock, at least) and thus be 
tagged with identical timestamps. If we have algorithms that compare messages 
to pick one over another and rely on them coming up with the same answer on 
all systems, we have a problem as there will be no unique way to select one 
message over another consistently  

Logical clocks 

Let’s again consider cases that involve assigning sequence numbers (“time-
stamps”) to events upon which all cooperating processes can agree. What mat-
ters in these cases is not the time of day at which the event occurred but that all 
processes can agree on the order in which related events occur. Our interest is in 
getting event sequence numbers that make sense system-wide. These clocks are 
called logical clocks.  

If we can do this across all events in the system, we have something called total 
ordering: every event is assigned a unique timestamp (number), every such time-
stamp is unique. 

However, we don’t always need total ordering. If processes do not interact then 
we don’t care when their events occur. If we only care about assigning time-
stamps to related (causal) events then we have something known as partial order-
ing.  

Leslie Lamport developed a “happens before” notation to express the relation-
ship between events: a→b means that a happens before b. If a represents the 
timestamp of a message sent and b is the timestamp of that message being re-
ceived, then a→b must be true; a message cannot be received before it is sent. 
This relationship is transitive. If a→b and b→c then a→c. If a and b are events 
that take place in the same process the a→b is true if a occurs before b. 

The importance of measuring logical time is in assigning a time value to each 
event such that everyone will agree on 
the final order of events. That is, if a→b 
then clock(a) < clock(b) since the clock 
(our timestamp generator) must never 
run backwards. If a and b occur on dif-
ferent processes that do not exchange 
messages (even through third parties) 
then a→b is not true. These events are 
said to be concurrent: there is no way 
that a could have influenced b. 

Consider the sequence of events de-
picted in Figure 1 taking place between  

Figure 1. Unsequenced event stamps 
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three processes. Each event is assigned a timestamp by its respective process. 
The process simply maintains a global counter that is incremented before each 
event gets a timestamp.  

If we examine the timestamps from our global perspective, we can observe a 
number of peculiarities. Event g, the event representing the receipt of the mes-
sage sent by event a, has the exact same timestamp as event a when it clearly 
had to take place after event a. Event e has an earlier time stamp (1) than the 
event that sent the message (b, with a timestamp of 2).  

Lamport’s algorithm remedies the situation by forcing a resequencing of time-
stamps to ensure that the happens before relationship is properly depicted for 
events related to sending and receiving messages. It works as follows: 

Each process has a clock, which can be a simple counter that 
is incremented for each event. 

The sending of a message is an event and each message car-
ries with it a timestamp obtained from the current value of 
the clock at that process (sequence number). 

The arrival of a message at a process is also an event will also 
receive a timestamp – by the receiving process, of course. The 
process’ clock is incremented prior to timestamping the 
event, as it would be for any other event. If the clock value is 
less than the timestamp in the received message, the system’s 
clock is adjusted to the (message’s timestamp + 1). Otherwise 
nothing is done. The event is now timestamped. 

If we apply this algorithm to the same sequence of messages, we can see that 
proper message ordering among causally related events is now preserved (Fig-
ure 2). Note that between every two events, the clock must tick at least once. 

Lamport's algorithm allows us to maintain proper time ordering among caus-
ally-related events. In summary, Lamport’s algorithm requires a monotonically 
increasing software counter for a “clock” that has to be incremented at least 
when events that need to be time-
stamped take place. These events 
will have the clock value, or “Lam-
port timestamp,” associated with 
them. For any two events, where 
a→b, L(a) < L(b) where L(x) repre-
sents the Lamport timestamp for 
event x.  

Lamport timestamps assure us that 
if there is a causal relationship be-
tween two events, then the earlier 
event will have a smaller time-

e 

f 

 
Figure 2. Lamport sequenced event stamps 
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stamp than the later event. Causality is achieved by successive events on one 
process or by the sending and receipt of messages on different processes. As de-
fined by the happened-before relationship, causality is transitive. For instance, 
events a and f are causally related in Figure 2 (through the sequence a, b, e, f).  

Total ordering 
Note that it is very possible for multiple non-causal (concurrent) events to share 
identical Lamport timestamps (e.g., c, e, and h in Figure 2). This may cause con-
fusion if multiple processes need to make a decision based on the timestamps of 
two events. The selection of a specific event may not matter if the events are 
concurrent but we want all the processes to be able to make the same decision. 
This is difficult if the timestamps are identical. Fortunately, there’s an easy rem-
edy. 

We can create a total order on events by further qualifying them with identities 
of processes. We define a global logical timestamp (Ti,i) where Ti represents the 
local Lamport timestamp and i represents the process ID (in some globally 
unique way: for example, a concatenation of host address and process ID). We 
are then able to globally compare these timestamps and conclude that 

(Ti,i) < (Tj,j) 

 if and only if 

Ti < Tj 

or Ti = Tj  and  i < j.  

There is no physical significance to the 
order since process identifiers can be 
arbitrary and do not relate to event or-
dering but the ability to ensure that no 
two Lamport timestamps are the same 
globally is helpful in algorithms that 
need to compare these timestamps. 
Figure 3 shows an example with a suf-
fix of the process ID added to each 
timestamp. In real life, depending on 
the application, one may use a combi-
nation of thread ID, process ID, and IP 
address as a qualifier to the timestamp. 

Vector clocks: identifying concurrent events 
If two events are causally related and event e happened before event e’ then we 
know that L(e) < L(e’). However, the converse is not necessarily true. With Lam-
port’s algorithm, if L(e) < L(e’) we cannot conclude that e→e’. Hence, if we look 
at Lamport timestamps, we cannot conclude which pairs of events are causally 
related and which are not. One solution that has been proposed to deal with this 

 
Figure 3. Totally ordered Lamport timestamps 
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Figure 4. Messages with vector timestamps 

problem is the concept of vector clocks (proposed by Mattern in 1989 and Fridge 
in 1991). 

A vector clock in a system of N processes is a vector of N integers. Each process 
maintains its own vector clock (Vi for a process Pi) to timestamp local events. 
Like Lamport timestamps, vector timestamps (the vector of N integers) are sent 
with each message. The rules for using vector clocks are: 

1. The vector is initialized to 0 at all processes: 
 Vi[j] = 0  for  i,j = 1, …, N 

2. Before a process Pi timestamps an event, it increments its element of the 
vector in its local vector: 
  Vi[i] = Vi[i]+1 

3. A message is sent from process Pi with Vi attached to the message. 

4. When a process Pj receives a vector timestamp t, it compares the two 
vectors element by element, setting its local vector clock to the higher of 
the two values: 
  Vj[i] = max(Vj[i], t[i])  for  i=1, …, N 

We compare two vector timestamps by defining: 

  V = V’  iff   V[j]  = V’[j]  for  i=1, …, N 

  V ≤ V’  iff   V[j]  ≤ V’[j]  for  i=1, …, N 

For any two events e, e’, if e→e’ then V(e)  < V(e’). This is the same as we get 
from Lamport’s algorithm. With vector clocks, we now have the additional 
knowledge that if V(e) <V(e’) then e→e’. Two events e, e’ are concurrent if neither 
V(e) ≤ V(e’) nor V(e’) ≤ V(e). 

The disadvantage with vector clocks is the greater storage and message payload 
size, since an entire vector rather than a single integer must be manipulated. We 
can examine the events in Figure 4 with vector clocks and see how events a and 
e can be determined to be concurrent by com-
paring their vector timestamps. If we do an 
element-by-element comparison, we see that 
each element in one timestamp is not 
consistently less than or equal to its 
corresponding element in the second 
timestamp. For example, element 1 is greater 
in a than it is in e (1>0) but element 3 in a is 
less it is in e (0<1). 
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Figure 5. Clock drift and clock skew 

 

Physical clocks 

Most computers today keep track of the passage of time with a battery-backed-
up CMOS clock circuit, driven by a quartz resonator. This allows the timekeep-
ing to take place even if the machine is powered off. When on, an operating sys-
tem will generally program a timer circuit (a Programmable Interval Timer, or 
PIT, in older Intel architectures and Advanced Programmable Interrupt Control-
ler, or APIC, in newer systems.) to generate an interrupt periodically (common 
times are 60 or 100 times per second). The interrupt service procedure simply 
adds one to a counter in memory. 

While the best quartz resonators can achieve an accuracy of one second in 10 
years, they are sensitive to changes in temperature and acceleration and their 
resonating frequency can change as they age. Standard resonators are accurate 
to 6 parts per million at 31° 
C, which corresponds to 
±½ second per day. 

The problem with maintain-
ing a concept of time is when 
multiple entities expect each 
other to have the same idea 
of what the time is. Two 
watches hardly ever agree. 
Computers have the same 
problem: a quartz crystal on 
one computer will oscillate 
at a slightly different fre-
quency than on another 
computer, causing the clocks 
to tick at different rates. The 
phenomenon of clocks tick-
ing at different rates, creat-
ing a ever widening gap in perceived time is known as clock drift. The difference 
between two clocks at any point in time is called clock skew and is due to both 
clock drift and the possibility that the clocks may have been set differently on 
different machines. Figure 5 illustrates this phenomenon with two clocks, A and 
B, where clock B runs slightly faster than clock A by approximately two seconds 
per hour. This is the clock drift of B relative to A. At one point in time (five sec-
onds past five o'clock according to A's clock), the difference in time between the 
two clocks is approximately four seconds. This is the clock skew at that particu-
lar time. 

Compensating for drift 

We can envision clock drift graphically by considering true (UTC) time flowing 
on the x-axis and the corresponding computer’s clock reading on the y-axis. A 
perfectly accurate clock will exhibit a slope of one. A faster clock will create a 
slope greater than unity while a slower clock will create a slope less than unity. 
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Suppose that we have a means of obtaining the true time. One easy (and fre-
quently adopted) solution is to simply update the system time to the true time. 
To complicate matters, one constraint that we’ll impose is that it’s not a good 
idea to set the clock back. The illusion of time moving backwards can confuse 
message ordering and software development environments. 

If a clock is fast, it simply has to be made to run slower until it synchronizes. If 
a clock is slow, the same method can be applied and the clock can be made to 
run faster until it synchronizes. The operating system can do this by changing 
the rate at which it requests interrupts. For example, suppose the system re-
quests an interrupt every 17 milliseconds (pseudo-milliseconds, really – the 
computer’s idea of what a 
millisecond is) and the clock 
runs a bit too slowly. The 
system can request inter-
rupts at a faster rate, say 
every 16 or 15 milliseconds, 
until the clock catches up. 
This adjustment changes the 
slope of the system time and 
is known as a linear compen-
sating function (Figure 6). Af-
ter the synchronization pe-
riod is reached, one can 
choose to resynchronize pe-
riodically and/or keep track 
of these adjustments and ap-
ply them continually to get a 
better running clock. This is 
analogous to noticing that 
your watch loses a minute 
every two months and mak-
ing a mental note to adjust the clock by that amount every two months (except 
the system does it continually). For an example of clock adjustment, see the 
UNIX System V man page for adjtime. 

Setting the time on physical clocks 

With physical clocks, our interest is not in advancing them just to ensure proper 
message ordering, but to have the system clock keep good time. We looked at 
methods for adjusting the clock to compensate for skew and drift, but it is es-
sential that we get the time first so that we would know what to adjust. 

One possibility is to attach a GPS (Global Positioning System) receiver to each 
computer. A GPS receiver will provide time within ± 1 msec. of UTC time and 
can be had for under US $40. Unfortunately, they rarely work indoors. Alterna-
tively, if the machine is in the U.S., one can attach a WWV radio receiver to ob-
tain time broadcasts from Boulder, Colorado or Washington, DC, giving accura-
cies of ± 3–10 msec., depending on the distance from the source. Another option 
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Figure 6. Compensating for drift with a linear compensat-
ing function 
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is to obtain a GOES (Geostationary Operational Environment Satellites) receiver, 
which will provide time within ± 0.1 msec. of UTC time. For reasons of econ-
omy, convenience, and reception, these are not practical solutions for every ma-
chine. Most machines will set their time by asking another machine for the time 
(preferably one with one of the aforementioned time sources). A machine that 
provides this information is called a time server. 

Cristianʼs algorithm 

The simplest algorithm for setting the time would be to simply issue a remote 
procedure call to a time server and obtain the time. That does not account for 
the network and processing delay. We can attempt to compensate for this by 
measuring the time (in local system time) at which the request is sent (T0) and 
the time at which the response is received (T1). Our best guess at the network 
delay in each direction is to assume that the delays to and from are symmetric 
(we have no reason to believe otherwise). The estimated overhead due to the 
network delay is then (T1- T0)/2. The new time can be set to the time returned by 
the server plus the time that elapsed since the server generated the timestamp:  

Suppose that we know the smallest time interval that it could take for a message 
to be sent between a client and server (either direction). Let's call this time Tmin. 
This is the time when the network and CPUs are completely unloaded. Knowing 
this value allows us to place bounds on the accuracy of the result obtained from 
the server. If we sent a request to the server at time T0, then the earliest time 
stamp that the server could generate the timestamp is T0 + Tmin. The latest time 
that the server could generate the timestamp is T1 - Tmin, where we assume it 
took only the minimum time, Tmin, to get the response. The range of these times 
is: T1 - T0  - 2Tmin, so the accuracy of the result is: 

Errors are cumulative. If machine A synchronizes from a server B and gets an 
accuracy of ±5 msec but server B in turn got its time from server C with an accu-
racy of ±7 msec, the net accuracy at machine A is ±(5+7), or ±12 msec. 

Several time requests may be issued consecutively in the hope that one of the 
requests may be delivered faster than the others (e.g., it may be submitted dur-
ing a time window when network activity is minimal). This can achieve im-
proved accuracy. 

Cristian's algorithm suffers from the problem that afflicts all single-server algo-
rithms: the server might fail and clock synchronization will be unavailable. It is 
also subject to malicious interference. 

€ 

±
T1 −T0
2

−Tmin
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Berkeley algorithm 

The Berkeley algorithm, developed by Gusella and Zatti in 1989, does not as-
sume that any machine has an accurate time source with which to synchronize. 
Instead, it opts for obtaining an average time from the participating computers 
and synchronizing all machines to that average. 

The machines involved in the synchronization each run a time dæmon process 
that is responsible for implementing the protocol. One of these machines is 
elected (or designated) to be the master. The others are slaves. The server polls 
each machine periodically, asking it for the time. The time at each machine may 
be estimated by using Cristian's method to account for network delays. When all 
the results are in, the master computes the average time (including its own time 
in the calculation). The hope is that the average cancels out the individual 
clock's tendencies to run fast or slow. 

Instead of sending the updated time back to the slaves, which would introduce 
further uncertainty due to 
network delays, it sends each 
machine the offset by which its 
clock needs adjustment. The 
operation of this algorithm is 
illustrated in Figure 7. Three 
machines have times of 3:00, 3:25, 
and 2:50. The machine with the 
time of 3:00 is the server (master). 
It sends out a synchronization 
query to the other machines in the group. Each of these machines sends a time-
stamp as a response to the query. The server now averages the three time-
stamps: the two it received and its own, computing (3:00+3:25+2:50)/3 = 3:05. 
Now it sends an offset to each machine so that the machine's time will be syn-
chronized to the average once the offset is applied. The machine with a time of 
3:25 gets sent an offset of -0:20 and the machine with a time of 2:50 gets an offset 
of +0:15. The server has to adjust its own time by +0:05. 

The algorithm also has provisions to ignore readings from clocks whose skew is 
too great. The master may compute a fault-tolerant average – averaging values 
from machines whose clocks have not drifted by more than a certain amount. If 
the master machine fails, any other slave could be elected to take over. 

Network Time Protocol (NTP) 

The Network Time Protocol [1991, 1992] is an Internet standard (version 3, RFC 
1305) whose goals are to: 

- Enable clients across the Internet to be accurately synchronized to UTC 
(universal coordinated time) despite message delays. Statistical tech-
niques are used for filtering data and gauging the quality of the results. 

3:00

3:25 2:50

time?time?

3:25 2:50

3:25 2:50

+0:15-0:20 3:00

+0:05
server server

 
Figure 7. Berkeley synchronization algorithm 
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- Provide a reliable service that can survive lengthy losses of connec-
tivity. This means having redundant paths and redundant servers. 

- Enable clients to synchronize frequently and offset the effects of clock 
drift. 

- Provide protection against interference; authenticate that the data is 
from a trusted source. 

The NTP servers are arranged into strata. 
The first stratum contains the primary 
servers, which are machines that are 
connected directly to an accurate time 
source. The second stratum contains the 
secondary servers. These machines are 
synchronized from the primary stratum 
machines. The third stratum contains terti-
ary servers that are synchronized from the secondaries, and so on. Together, all 
these servers form the synchronization subnet (Figure 8). 

A machine will often try to synchronize with several servers, using the best of 
all the results to set its time. The best result is a function of a number of quali-
ties, including: round-trip delay, consistency of the delay, round-trip error, 
server’s stratum, the accuracy of the server’s clock, the last time the server’s 
clock was synchronized, and the estimated drift on the server. 

Because a system may synchronize with multiple servers, its stratum is dy-
namic: it is based on the server used for the latest synchronization. If you syn-
chronized from a secondary NTP server then you are in the third stratum. If, 
next time, you used a primary NTP server to synchronize, you are now in the 
second stratum.  

Machines synchronize in one of the following modes: 

- symmetric active mode: a host sends periodic messages regardless of the 
reachability state or stratum of its peer 

- symmetric passive: this mode is created when a system receives a mes-
sage from a peer operating in symmetric active mode and persists as 
long as the peer is reachable and operating at a stratum less than or 
equal to the host. This is a mode where the host announces its willing-
ness to synchronize and be synchronized by the peer. This mode offers 
the highest accuracy and is intended for use by master servers. A pair 
of servers exchanges messages with each other containing timing in-
formation. Timing data are retained to improve accuracy in 
synchronization over time. 

time source

stratum 1

stratum 2

stratum 3

Figure 8. NTP synchronization subnet 
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- procedure call mode: similar to Cristian’s algorithm; a client announces 
its willingness to by synchronized by the server, but not to synchronize 
the server. 

- multicast mode: intended for high speed LANs; relatively low accuracy 
but fine for many applications. 

All messages are delivered unreliably via UDP. In both the procedure call mode 
and symmetric mode, messages are exchanged in pairs. Each message has the 
following timestamps: 

 Ti-3: local time when previous NTP message was sent. 

 Ti-2: local time when previous NTP message was received. 

 Ti-1: local time when current NTP message was sent. 

The server notes its local time, Ti. For each pair, NTP calculates the offset (esti-
mate of the actual offset between two clocks) and delay (total transit time for 
two messages). In the end, a process determines three products: 

1. Clock offset: this is the amount that the local clock needs to be adjusted 
to have it correspond to a reference clock. 

2. Roundtrip delay: this provides the client with the capability to launch a 
message to arrive at the reference clock at a particular time; it gives us 
a measure of the transit time of the mesge to a particular time server. 

3. Dispersion: this is the “quality of estimate” (also known as filter disper-
sion) based on the accuracy of the server’s clock and the consistency of 
the network transit times. It represents the maximum error of the local 
clock relative to the reference clock. 

By performing several NTP exchanges with several servers, a process can de-
termine which server to favor. The preferred ones are those with a lower stra-
tum and the lowest total filter dispersion. A higher stratum (less accurate) time 
source may be chosen if the communication to the more accurate servers is less 
predictable. 

The Simple Network Time Protocol, SNTP (RFC 2030), is an adaptation of the Net-
work Time Protocol that allows operation in a stateless remote procedure call 
mode or multicast mode. It is intended for environments when the full NTP im-
plementation is not needed or is not justified. The intention is that SNTP be 
used at the ends of the synchronization subnet (high strata) rather than for syn-
chronizing time servers.  

SNTP can operate in either a unicast, multicast, or anycast modes: 

- in unicast mode, a client sends a request to a designated server 
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- in multicast mode, a server periodically sends a broadcast or multicast 
message and expects no requests from clients 

- in anycast mode, a client sends a request to a local broadcast or multi-
cast address and takes the first response received by responding serv-
ers. From then on, the protocol proceeds as in unicast mode1. 

NTP and SNTP messages are both sent via UDP (there is no point in having time 
reports delayed by  possible TCP retransmissions). The message structure con-
tains: 

Leap indicator warns of impending leap second (last minute has either 
59, 60, or 61 seconds) 

Version number  

Mode symmetric active, symmetric passive, client, server, 
broadcast 

Stratum stratum 

Poll interval maximum interval between successive messages (power 
of 2) 

Precision 8-bit signed integer indicating the precision of the local 
clock, seconds to nearest power of two 

Root delay 32-bit number indicating total roundtrip delay to pri-
mary reference source (16 bit seconds, and 16 bits of 
decimal seconds) 

Root dispersion 32-bit number indicating the nominal error relative to 
the primary reference source 

Reference identifier identify the reference source – four character ASCII 
string. Possible sources are: local uncalibrated clock, 
atomic clock, NIST dial-up modem service, USNO modem 
service, PTB (Germany) dial-up modem service, Allouis 
(France) radio, Boulder (CO, USA) radio, LORAN-C radi-
onavigation system, Global Positioning System (GPS), 
Geostationary Orbit Environment Satellite(GOES), & cet-
era. 

Reference timestamp 
(64 bits) 

time at which local clock was last set or corrected 

Originate timestamp 
(64 bits) 

time at which request departed the client for the server 

Receive timestamp 
(64 bits) 

time at which the request arrived at the server 

                                                
1 This is a somewhat different definition of anycast than that used in IPv6. 
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Transmit timestamp 
(64 bits) 

time at which the reply departed the server 

Key identifier (32 bits) used if the NTP authentication scheme is implemented 

Message digest 
(128 bits) 

used if the NTP authentication scheme is implemented 

 

In unicast mode, the roundtrip delay and local offset are calculated as follows 
(from RFC2030): 

1. The client sets the transmit timestamp in the request to the time of 
day according to the client clock. (T1). 

2. The server copies this field to the originate timestamp in the reply and 
sets the receive timestamp and transmit timestamps to the time of day 
according to the server clock (T2, T3). 

3. When the server reply is received, the client determines a destination 
timestamp as the time of arrival according to its clock (T4). 

Timestamp name ID when generated 

originate timestamp T1 time request sent by client 

receive timestamp T2 time request received by 
server 

transmit timestamp T3 time reply sent by server 

destination timestamp T4 time reply received by client 

 

The roundtrip delay d is defined as: 

  d = (T4 – T1 ) – (T2 – T3) 

Note that the delay estimates the time spent sending and receiving data over the 
network, and subtracts out the processing delay at the server. The local clock 
offset t is defined as: 

t = ((T2 – T1) + (T3 – T4)) / 2 

The client, after computing this offset, adds this amount to its clock. 
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