

Rutgers University – CS 417: Distributed Systems

©1998-2009 Paul Krzyzanowski 1

Lectures on distributed systems

Process Synchronization and Election Algorithms

Paul Krzyzanowski

Process Synchronization: mutual exclusion

Process synchronization is the set of techniques that are used to coordinate execution amongst

processes. For example, a process may wish to run only to a certain point, at which it will stop

and wait for another process to finish certain actions. A common resource (such as a device or a

location in memory) may require exclusive access and processes have to coordinate amongst

themselves to ensure that access is fair and exclusive. In centralized systems, it was common

enforce exclusive access to shared code. Mutual exclusion was accomplished through

mechanisms such as test and set locks in hardware and semaphores, messages, and condition

variables in software. We will now revisit the topic of mutual exclusion in distributed systems. We

assume that there is group agreement on how a critical section (or exclusive resource) is

identified (e.g. name, number) and that this identifier is passed as a parameter with any requests.

Central server algorithm

The central server algorithm simulates a single

processor system. One process in the distributed

system is elected as the coordinator (Figure 1). When a

process wants to enter a critical section, it sends a

request message (identifying the critical section, if

there are more than one) to the coordinator.

If nobody is currently in the section, the coordinator

sends back a grant message and marks that process

as using the critical section. If, however, another

process has previously claimed the critical section, the

server simply does not reply, so the requesting process

is blocked.

When a process is done with its critical section, it sends a release message to the coordinator.

The coordinator then can send a grant message to the next process in its queue of processes

requesting a critical section (if any).

This algorithm is easy to implement and verify. It's fair in that all requests are processed in order.

Unfortunately, it suffers from having a single point of failure. A process cannot distinguish

between being blocked (not receiving a grant because someone else is in the critical section) and

not getting a response because the coordinator is down. Moreover, a centralized server can be a

bottleneck in large systems.

Figure 1. Centralized mutual exclusion

Process Synchronization and Election Algorithms

Rutgers University – CS 417: Distributed Systems

©2000-2009 Paul Krzyzanowski 2

Ricart & Agrawala’s Distributed mutual exclusion

Ricart & Agrawala came up with a distributed mutual exclusion algorithm in 1981. It requires the

following:

 total ordering of all events in a system (e.g. Lamport's algorithm or others).

 messages are reliable (every message is acknowledged).

When a process wants to enter a critical section, it:

1. composes a message containing {mesage identifier(machine, proc#), name of critical

section, timestamp).

2. sends a request message to all other processes in the group (may use reliable group

communication).

3. wait until everyone in the group has given

permission.

4. enter the critical section.

When a process receives a request message, it may be in

one of three states:

Case 1: The receiver is not interested in the critical section, send reply (OK) to

sender.

Case 2: The receiver is in the critical section; do not reply and add the request to

a local queue of requests.

Case 3: The receiver also wants to enter the critical section and has sent its

request. In this case, the receiver compares the timestamp in the

received message with the one that it has sent out. The earliest

timestamp wins. If the receiver is the loser, it sends a reply (OK) to

sender. If the receiver has the earlier timestamp, then it is the winner and

does not reply. Instead, it adds the request to its queue.

When the process is done with its critical section, it sends a reply (OK) to everyone on its queue

and deletes the processes from the queue.

As an example of dealing with contention, consider Figure 2. Here, two processes, 0 and 2,

request access to the same resource (critical section). Process 0 sends its request with a

timestamp of 8 and process 2 sends its request with a timestamp of 12 (Figure 2a).

Figure 2. Distributed mutual exclusion

Process Synchronization and Election Algorithms

Rutgers University – CS 417: Distributed Systems

©2000-2009 Paul Krzyzanowski 3

Figure 3. Token ring algorithm

Since process 1 is not interested in the critical section, it immediately sends back permission to

both 0 and 1. Process 0, however, is interested in the critical section. It sees that process 2’s

timestamp was later than its own (12>8), so process 0 wins. It does not send a response to

process 2 but instead queues the request from 2 (Figure 2b).

Process 2 is also interested in the critical section. When it compares its message’s timestamp

with that of the message it received from process 0, it sees that it lost (process 1’s timestamp was

earlier), so it replies with a permission message to process 0 and continues to wait for all other

group members to give it permission to enter the critical section (Figure 2c).

Process 0 received a permission message from process 2 as well as other group members.

Hence, process 0 received permission from the entire group and can enter the critical section.

When process 0 is done with the critical section, it examines its queue of pending permissions,

finds process 2 in that queue, and sends it permission to enter the critical section (Figure 2d).

Now process 2 has received permission from everyone and can enter the critical section.

One problem with this algorithm is that a single point of failure has now been replaced with n

points of failure. A poor algorithm has been replaced with one that is essentially n times worse.

All is not lost. We can patch this omission up by having the sender always send a reply to a

message... either an OK or a NO. When the request or the reply is lost, the sender will time out

and retry. Still, it is not a great algorithm and involves quite a bit of message traffic but it

demonstrates that a distributed algorithm is at least possible.

Token Ring algorithm

For this algorithm, we assume that there is a group of processes with no inherent ordering of

processes, but that some ordering can be imposed on the group. For example, we can identify

each process by its machine address and process ID to obtain an ordering. Using this imposed

ordering, a logical ring is constructed in software. Each process is assigned a position in the ring

and each process must know who is next to it in the ring (Figure 3).

 The ring is initialized by giving a token to process 0. The token circulates around the

ring (process n passes it to (n+1)mod ringsize.

 When a process acquires the token, it checks to see if it is attempting to enter the

critical section. If so, it enters and does its work. On exit, it passes the token to its

neighbor.

 If a process isn't interested in entering a critical section, it

simply passes the token along.

Only one process has the token at a time and it must have the

token to work on a critical section, so mutual exclusion is

guaranteed. Order is also well-defined, so starvation cannot occur.

The biggest drawback of this algorithm is that if a token is lost, it will

have to be generated. Determining that a token is lost can be

difficult.

Process Synchronization and Election Algorithms

Rutgers University – CS 417: Distributed Systems

©2000-2009 Paul Krzyzanowski 4

Election algorithms

We often need one process to act as a coordinator. It may not matter which process does this,

but there should be group agreement on only one. An assumption in election algorithms is that all

processes are exactly the same with no distinguishing characteristics. Each process can obtain a

unique identifier (for example, a machine address and process ID) and each process knows of

every other process but does not know which is up and which is down.

Bully algorithm

The bully algorithm selects the process with the largest identifier as the coordinator. It works as

follows:

1. When a process p detects that the coordinator is not responding to requests, it

initiates an election:

a. p sends an election message to all processes with higher numbers.

b. If nobody responds, then p wins and takes over.

c. If one of the processes answers, then p's job is done.

2. If a process receives an election message from a lower-numbered process at any

time, it:

a. sends an OK message back.

b. holds an election (unless its already holding one).

3. A process announces its victory by sending all processes a message telling them that

it is the new coordinator.

4. If a process that has been down recovers, it holds an election.

Ring algorithm

The ring algorithm uses the same ring arrangement as in the token ring mutual exclusion

algorithm, but does not employ a token. Processes are physically or logically ordered so that

each knows its successor.

 If any process detects failure, it constructs an election message with its process I.D.

(e.g. network address and local process I.D.) and sends it to its successor.

 If the successor is down, it skips over it and sends the message to the next party. This

process is repeated until a running process is located.

 At each step, the process adds its own process I.D. to the list in the message.

Eventually, the message comes back to the process that started it:

1. The process sees its ID in the list.

Process Synchronization and Election Algorithms

Rutgers University – CS 417: Distributed Systems

©2000-2009 Paul Krzyzanowski 5

2. It changes the message type to coordinator.

3. The list is circulated again, with each process selecting the highest numbered ID in

the list to act as coordinator.

4. When the coordinator message has circulated fully, it is deleted.

Multiple messages may circulate if multiple processes detected failure. This creates a bit of

overhead but produces the same results.

Process Synchronization and Election Algorithms

Rutgers University – CS 417: Distributed Systems

©2000-2009 Paul Krzyzanowski 6

References

Distributed Systems: Concepts and Design, G. Coulouris, J. Dollimore, T. Kindberg, (c)1996

Addison Wesley Longman, Ltd., pp. 300-309 (section 10.4)

Distributed Operating Systems, Andrew Tanenbaum, ©; 1995 Prentice Hall.

