Distributed Systems

Secure Communication

Paul Krzyzanowski pxk@cs.rutgers.edu

Key explosion

Each pair of users needs a separate key for secure communication

2 users: 1 key

6 users: 15 keys

3 users: 3 keys
100 users: 4950 keys
1000 users: 399500 keys

$$
n \text { users: } \frac{n(n-1)}{2} \quad \text { keys }
$$

Key exchange

How can you communicate securely with someone you've never met?

Whit Diffie: idea for a public key algorithm

Challenge: can this be done securely?
Knowledge of public key should not allow derivation of private key

Symmetric cryptography

- Both parties must agree on a secret key, K
- message is encrypted, sent, decrypted at other side

- Key distribution must be secret
- otherwise messages can be decrypted
- users can be impersonated

Secure key distribution is the biggest problem with symmetric cryptography

Diffie-Hellman exponential key exchange

Key distribution algorithm

- first algorithm to use public/private keys
- not public key encryption
- based on difficulty of computing discrete logarithms in a finite field compared with ease of calculating exponentiation
allows us to negotiate a secret session key without fear of eavesdroppers

Diffie-Hellman exponential key exchange

- All arithmetic performed in
field of integers modulo some large number
- Both parties agree on
- a large prime number p
- and a number $\alpha<p$
- Each party generates a public/private key pair
private key for user i: X_{i}
public key for user $; y_{i}=\alpha^{x_{i}} \bmod p$

```
Diffie-Hellman exponential key exchange
- Alice has secret key \(X_{A}\) - Bob has secret key \(X_{B}\)
- Alice has public key \(Y_{A}\)
- Bob has public key \(Y_{B}\)
- Alice computes
- Bob computes
\[
K=Y_{a}^{x_{A}} \bmod p
\]
\[
K^{\prime}=Y_{A}^{x_{n}} \bmod p
\]
```

```
K' = (Alice's public key) (Bob's private key) mod p
```

```
K' = (Alice's public key) (Bob's private key) mod p
```


Diffie-Hellman example

Suppose $p=31667, \alpha=7$

```
Alice picks Bob picks
    \mp@subsup{X}{A}{}=18}\quad\mp@subsup{X}{B}{}=2
Alice's public key is: Bob's public key is:
    YA}=\mp@subsup{7}{}{18}\operatorname{mod}31667=\quad\mp@subsup{Y}{B}{}=\mp@subsup{7}{}{27}\operatorname{mod}31667
    6780
```



```
    K=2218418}\operatorname{mod}3166
    K=678027 mod 31667
    K = 14265
    K=14265
```


Diffie-Hellman exponential key exchange
 - Alice has secret key X_{A}. Bob has secret key X_{B}
 - Alice has public key Y_{A} - Bob has public key Y_{B}
 - Alice computes

$$
K=Y_{n}^{x_{A}} \bmod p
$$

$K=(B o b$'s public key) (Alice's private key) mod p

Diffie-Hellman exponential key exchange

- Alice has secret key X_{A} - Bob has secret key X_{B}
- Alice has public key Y_{A} - Bob has public key Y_{B}
- Alice computes
- Bob computes
- expanding:
- expanding:

$$
\begin{array}{rlrl}
K & =Y_{a}^{x_{A}} \bmod p & K^{\prime} & =Y_{A}^{x_{E}} \bmod p \\
K & =Y_{\omega}^{x_{A}} \bmod p & K & =Y_{\omega}^{x_{A}} \bmod p \\
& =\left(a^{x_{4}} \bmod p\right)^{x_{4}} \bmod p & & =\left(a^{x_{4}} \bmod p\right)^{x_{A}} \\
& =a^{x_{d} x_{A}} \bmod p & & =a^{x_{*} x_{A}} \bmod p
\end{array}
$$

K is a common key, known only to Bob and Alice

Key distribution problem is solved!

- User maintains private key
- Publishes public key in database ("phonebook")
- Communication begins with key exchange to establish a common key
- Common key can be used to encrypt a session key
- increase difficulty of breaking common key by reducing the amount of data we encrypt with it
- session key is valid only for one communication session

RSA: Public Key Cryptography

- Ron Rivest, Adi Shamir, Leonard Adleman created a true public key encryption algorithm in 1977
- Each user generates two keys
- private key (kept secret)
- public key
- difficulty of algorithm based on the difficulty of factoring large numbers
- keys are functions of a pair of large (~200 digits) prime numbers

RSA algorithm

- encrypt
- divide data into numerical blocks < n
- encrypt each block:
$c=m^{e} \bmod n$
- decrypt:
$m=c^{d} \bmod n$

Communication with public key algorithms

\qquad

Bob
Bob's public key: K_{B}
exchange public keys
(or look up in a directory/DB)

RSA algorithm

Generate keys

- choose two random large prime numbers p,q
- Compute the product $n=p q$
- randomly choose the encryption key, e, such that:
e and $(p-1)(q-1)$ are relatively prime
- use the extended Euclidean algorithm to compute the decryption key, d: $e d=1 \bmod ((p-1)(q-1))$
$d=e^{-1} \bmod ((p-1)(q-1))$
- discard p, q

Communication with public key algorithms
Different keys for encrypting and decrypting

- no need to worry about key distribution

Communication with public key algorithms

encrypt message with Bob's public key

decrypt message with Bob's private key

Communication with public key algorithms

Bob
Bob's public key: K_{8}

encrypt message with Bob's public key

Public key woes

Public key cryptography is great but:
-RSA about 100 times slower than DES in software, 1000 times slower in HW

- Vulnerable to chosen plaintext attack
- if you know the data is one of n messages, just encrypt each message with the recipient's public key and compare
- It's a good idea to reduce the amount of data encrypted with any given key
- but generating RSA keys is computationally very time consuming

Hybrid cryptosystems

Use public key cryptography to encrypt a randomly generated symmetric key
session key

Communication with a hybrid cryptosystem

Alice

Pick random session key, K
Encrypt session key
with Bob's public key

Communication with a hybrid cryptosystem
Alice
Bob
Bob's public key: K_{B}
Get recipient's public key (or fetch from directory/database)

Communication with a hybrid cryptosystem

Alice	Bob
	\longleftrightarrow Bob's public key: K_{B}
$\mathrm{E}_{B}(\mathrm{~K})$	
	$K=\mathrm{D}_{\mathrm{b}}\left(\mathrm{E}_{B}(\mathrm{~K})\right)$

Communication with a hybrid cryptosystem

Digital Signatures

Signatures

We use signatures because a signature is:
Authentic
Unforgeable
Not reusable
Non repudiatable

Renders document unalterable

Signatures

We use signatures because a signature is

Not reusable Non repudiatable Rendees document unalterable

ALL UNTRUE!

Can we do better with digital signatures?

Digital signatures - arbitrated protocol

Arbitrated protocol using symmetric encryption

- turn to trusted third party (arbiter) to authenticate messages

[^0]Digital signatures - arbitrated protocol

Trent receives Alice's message and decrypts it with Alice's key - this authenticates that it came from Alice

- he may choose to log a hash of the message to create a record of the transmission

Digital signatures - arbitrated protocol

Trent now encrypts the message for Bob and sends it to Bob

Digital signatures - arbitrated protocol

Trent

Alice

Bob receives the message and decrypts it

- it must have come from Trent
since only Trent and Bob have Bob's key
-if the message says it's from Alice, it must be - we trust Trent

Digital signatures with multiple parties

Bob can forward the message to Charles in the same manner.
Trent can validate stored hash to ensure that Bob did not alter the message

Alice

Bob encrypts message with his key and sends it to Trent
Digital signatures with multiple parties

> | Trent |
| :--- |

Charles
$\mathrm{P}^{\prime \prime}=\mathrm{D}_{\mathrm{B}}\left(\mathrm{C}^{\prime \prime}\right)$

Alice
Bob
Trent decrypts the message

- knows it must be from Bob
- looks up ID to match original hash from Alice's message
- validates that the message has not been modified
- adds a "signed by Bob" indicator to the message

Digital signatures with multiple parties

> Alice

Bob

Digital signatures with multiple parties

$$
\begin{array}{|ll|}
\hline \text { Trent } & \begin{array}{|l}
\text { Charles } \\
\hline
\end{array} \\
\hline \mathrm{P}^{\prime \prime \prime}=\mathrm{D}_{\mathrm{C}}\left(\mathrm{C}^{\prime \prime \prime}\right)
\end{array}
$$

Alice

Charles decrypts the message

-knows the message must have come from Trent

- trusts Trent's assertion that the message originated with Alice and was forwarded through Bob

Digital signatures - public key cryptography
Encrypting a message with a private key is the same as signing!

-What if Alice was sending Bob binary data?

- Bob might have a hard time knowing whether the decryption was successful or not
- Public key encryption is considerably slower than symmetric encryption
- what if the message is very large?
- What if we don't want to hide the message, yet want a valid signature?

Digital signatures - public key cryptography

- Create a hash of the message
- Encrypt the hash and send it with the message
- Validate the hash by decrypting it and comparing it with the hash of the received message

Digital signatures - public key cryptography

$$
\begin{aligned}
& \text { Alice } \\
& \text { Bob } \\
& \text { 氖 } \xrightarrow{H(P)} \square
\end{aligned}
$$

Digital signatures - public key cryptography

Bob

Alice encrypts the hash with her private key

[^1]Digital signatures - public key cryptography

1. Bob decrypts the has using Alice's public key
2. Bob computes the hash of the message sent by Alice

Digital signatures - multiple signers

Bob generates a hash (same as Alice's) and encrypts it with his private key
sends Charles:
\{message, Alice's encrypted hash, Bob's encrypted hash\}

Secure and authenticated messaging

If we want secrecy of the message

- combine encryption with a digital signature
- use a session key: pick a random key, K, to encrypt the message with a symmetric algorithm
- encrypt K with the public key of each recipient
- for signing, encrypt the hash of the message with sender's private key

Digital signatures - public key cryptography

If the hashes match

- the encrypted hash must have been generated by Alice - the signature is valid

Digital signatures - multiple signers

- generates a hash of the message: $\mathrm{H}(\mathrm{P})$
- decrypts Alice's encrypted hash with Alice's public key - validates Alice's signature
- decrypts Bob's encrypted hash with Bob's public key - validates Bob's signature

Secure and authenticated messaging

Secure and authenticated messaging

Alice picks a random key, K, and encrypts the message (P) with it using a symmetric algorithm.

Secure and authenticated messaging

The aggregate message is sent to Bob and Charles

Secure and authenticated messaging

Message from Alice

Secure and authenticated messaging

Secure and authenticated messaging

Directory of public keys
\qquad

Secure and authenticated messaging

Bob validates Alice's signature

Examples

- Key exchange
- Public key cryptography
- Key exchange + secure communication
- Public key + symmetric cryptography
- Authentication

The end

- Nonce + encryption
- Message authentication codes
- Hashes
- Digital signature
- Hash + encryption

Cryptographic toolbox

- Symmetric encryption
- Public key encryption
- One-way hash functions
- Random number generators
- Nonces, session keys

[^0]: Alice encrypts message for herself and sends it to Trent

[^1]: Alice sends Bob the message and the encrypted hash

