

Symmetric cryptography

- Both parties must agree on a secret key, K
- $\boldsymbol{\cdot}$ message is encrypted, sent, decrypted at other side

Key exchange

How can you communicate securely with someone you've never met?

Whit Diffie: idea for a *public key* algorithm

Challenge: can this be done securely? Knowledge of public key should not allow derivation of private key

Diffie-Hellman exponential key exchange

Key distribution algorithm

- first algorithm to use public/private keys
- not public key encryption
- based on difficulty of computing discrete logarithms in a finite field compared with ease of calculating exponentiation

allows us to negotiate a secret **session key** without fear of eavesdroppers

Diffie-Hellman exponential key exchange

- All arithmetic performed in field of integers modulo some large number • Both parties agree on
 - a large prime number p
 and a number α < p
- · Each party generates a public/private key pair

private key for user *i*: X_i

public key for user i: $Y_i = \alpha^{X_i} \mod p$

Diffie-Hellman exponential key exchange • Alice has secret key X_A • Bob has secret key X_B • Alice has public key Y_A • Bob has public key Y_{β} Alice computes Bob computes $K = Y_B^{X_A} \mod p$ $K' = Y_A^{X_B} \mod p$ K' = (Alice's public key) (Bob's private key) mod p

Diffie-Hellman exponential key exchange • Alice has secret key X_A • Bob has secret key X_B • Alice has public key Y_A • Bob has public key Y_{β} Alice computes Bob computes • expanding: expanding: $K = Y_{\mu}^{x_{\mu}} \mod p$ $K' = Y_A^{x_6} \mod p$ $K = Y_B^{X_A} \mod p$ $K = Y_B^{\chi_A} \mod p$ $= (a^{x_n} \mod p)^{x_n} \mod p$ $= (a^{x_n} \mod p)^{x_n} \mod p$ $= a^{x_{\theta}x_{\theta}} \mod p$ $=a^{X_{\theta}X_{A}} \mod p$

K = K'

K is a common key, known only to Bob and Alice

Diffie-Hellman example Suppose $p = 31667, \alpha = 7$ Bob picks Alice picks X_B = 27 X_A = 18 Alice's public key is: Y_A = 7¹⁸ mod 31667 = 6780 Bob's public key is: $Y_{\rm B} = 7^{27} \mod{31667} = 22184$ K = 6780²⁷ mod 31667 K = 22184¹⁸ mod 31667 K = 14265K = 14265

Key distribution problem is solved!

- User maintains private key
- Publishes public key in database ("phonebook")
- Communication begins with key exchange to establish a common key
- · Common key can be used to encrypt a session key increase difficulty of breaking common key by reducing the amount of data we encrypt with it
 - session key is valid only for one communication session

RSA: Public Key Cryptography

- Ron Rivest, Adi Shamir, Leonard Adleman created a true public key encryption algorithm in 1977
- Each user generates two keys
 - private key (kept secret)
 - public key
- difficulty of algorithm based on the difficulty of factoring large numbers
 - keys are functions of a pair of large (~200 digits) prime numbers

RSA algorithm

Generate keys

- choose two random large prime numbers p, q
- Compute the product *n = pq*
- randomly choose the encryption key, *e*, such that:

e and (p-1)(q-1) are relatively prime - use the extended Euclidean algorithm to

- compute the decryption key, \vec{d} :
 - $ed = 1 \mod ((p 1) (q 1))$ $d = e^1 \mod ((p - 1) (q - 1))$
- discard p, q

Communication with public key algorithms Alice's public key: K_h Bob's public key: K_B $E_B(P)$ Oencrypt message with Bob's public key: $E_B(P)$ O $E_B(P)$

3

Communication with public key algorithms

Public key woes Public key cryptography is great but: - RSA about 100 times slower than DES in software, 1000 times slower in HW - Vulnerable to chosen plaintext attack • if you know the data is one of *n* messages, just encrypt each message with the recipient's public key and compare - It's a good idea to reduce the amount of data encrypted with any given key • but generating RSA keys is computationally very

time consuming

Hybrid cryptosystems Use public key cryptography to encrypt a randomly generated symmetric key session key

Communication with a hybrid cryptosystem

Communication with a hybrid cryptosystem

Digital signatures - public key cryptography

Encrypting a message with a private key is the same as signing!

Digital signatures - public key cryptography

- What if Alice was sending Bob binary data?
 Bob might have a hard time knowing whether the decryption was successful or not
- Public key encryption is considerably slower than symmetric encryption
 - what if the message is very large?
- What if we don't want to hide the message, yet want a valid signature?

Digital signatures - public key cryptography

- Create a hash of the message
- Encrypt the hash and send it with the message
- Validate the hash by decrypting it and comparing it with the hash of the received message

Digital signatures - multiple signers

Secure and authenticated messaging Alice H(P) $C_1 = E_a(H(P))$ Alice generates a digital signature by encrypting the message digest with her private key.

Secure and authenticated messaging Alice $C = E_{x}(P)$ H(P) $C_{1} = E_{x}(H(P))$ $C_{2} = E_{0}(K)$ $C_{3} = E_{0}(K)$

Alice encrypts the session key for each recipient of this message: Bob and Charles using their public keys

Secure and authenticated messaging Alice lessage from Alice Message: Ē $C = E_{\kappa}(P)$ Bob 72 H(P) Signature: 12 Z Key for Bob: $C_1 = E_a(H(P))$ Charles Key for Charles: Ø $\frac{K}{C_2} = E_B(K)$ K Z $C_3 = E_C(K)$ The aggregate message is sent to Bob and Charles

Secure and authenticated messaging

Secure and authenticated messaging

Secure and authenticated messaging

Secure and authenticated messaging

Cryptographic toolbox

- Symmetric encryption
- Public key encryption
- One-way hash functions
- Random number generators
 Nonces, session keys

Examples

- Key exchange
 - Public key cryptography
- Key exchange + secure communication
 Public key + symmetric cryptography
- Authentication
 - Nonce + encryption
- Message authentication codes
 Hashes
- Digital signature
 - Hash + encryption

The end