
1

Distributed File Systems

Paul Krzyzanowski • Distributed Systems

Accessing files
FTP, telnet:

– Explicit access
– User-directed connection to access remote

resources

We want more transparency
– Allow user to access remote resources just

as local ones

Focus on file system for now
NAS: Network Attached Storage

Paul Krzyzanowski • Distributed Systems

Operating System: File System

organization
storageretrieval
namingsharing

protection

Responsible for

of files

File directory services
bind file name to internal handle

(inode, FAT index)

File system controls access to data
Low-level operations:

buffering, issuing disk I/O
Paul Krzyzanowski • Distributed Systems

Distributed file system goals
• Access transparency

– Clients unaware files are remote

• Location transparency
– Consistent name space (local and remote)

• Concurrency transparency
– Modifications are coherent

• Failure transparency
– Client and client programs should operate

correctly after server failure

• Heterogeneity
– File service should be provided across

different hardware and software platforms

Paul Krzyzanowski • Distributed Systems

Distributed file system goals
• Scalability

– Scale from a few machines to many (tens of
thousands?)

• Replication transparency
– Clients unaware of replication
– Coherence maintained

• Migration transparency
– Files should be able to move around without

clients’ knowledge

• Fine grained distribution of data
– Locate objects near processes that use

them

Paul Krzyzanowski • Distributed Systems

Terms
• File service

– Specification of what the file system offers
to clients

• File
– name, data, attributes

• Immutable file
– Cannot be changed once created

• Easy to cache and replicate

• Protection
– Capabilities
– Access control lists

2

Paul Krzyzanowski • Distributed Systems

File service types
Upload/Download model

– Read file: copy file from server to client
– Write file: copy file from client to server

Advantage
– Simple

Problems
– Wasteful: what if client needs small piece?
– Problematic: what if client doesn’t have enough

space?
– Consistency: what if others need to modify the

same file?

Paul Krzyzanowski • Distributed Systems

File service types
Remote access model
File service provides functional interface:

– create, delete, read bytes, write bytes, etc…

Advantages:
– Client gets only what’s needed
– Server can manage coherent view of file system

Problem:
– Possible server and network congestion

• Servers are accessed for duration of file access
• Same data may be requested repeatedly

Paul Krzyzanowski • Distributed Systems

File server
File Directory Service

– Maps textual names for file to internal
locations that can be used by file service

File service
– Provides file access interface to clients

Client module (driver)
– Client side interface for file and directory

service
– if done right, helps provide access

transparency
e.g. under vnode layer

Paul Krzyzanowski • Distributed Systems

Random NAS Boxes

Linksys NSLU2
Network Storage

Link for USB 2.0 Drives

Linksys Etherfast
Network Attached
Storage (250 GB)

Buffalo
TeraStation Pro

1.6 TB

Buffalo
TeraStation

Home Server
1.0 TB

NetApp
FAS 3050

Dell PowerVault 745N

Paul’s FreeBSD NAS Box

Laptop PC

Semantics of
file sharing

Paul Krzyzanowski • Distributed Systems

Sequential semantics
Read returns result of last write
Easily achieved if

– Only one server
– Clients do not cache data

BUT
– Performance problems if no cache

• Obsolete data
– We can write-through

• Must notify clients holding copies
• Requires extra state, generates extra

traffic

3

Paul Krzyzanowski • Distributed Systems

Session semantics
• Relax the rules
• Changes to an open file are initially

visible only to the process (or machine)
that modified it.

• Last process to modify the file wins.

Paul Krzyzanowski • Distributed Systems

Other solutions
Make files immutable

– Aids in replication
– Does not help with detecting modification

Or...
Use atomic transactions

– Each file access is an atomic transaction
– If multiple transactions start concurrently

• Resulting modification is serial

Paul Krzyzanowski • Distributed Systems

File usage patterns
• We can’t have the best of all worlds
• Where to compromise?

– Semantics vs. efficiency
– Efficiency = client performance, network

traffic, server load

• Understand how files are used
• 1981 study by Satyanarayanan

Paul Krzyzanowski • Distributed Systems

File usage
Most files are <10 Kbytes

– (2005: average size of 385,341 files on my Mac =197 KB)
– (files accessed within 30 days:

147,398 files. average size=56.95 KB)

– Feasible to transfer entire files (simpler)
– Still have to support long files

Most files have short lifetimes
– Perhaps keep them local

Few files are shared
– Overstated problem
– Session semantics will cause no problem most of the

time

System design issues

Paul Krzyzanowski • Distributed Systems

Location transparency
Is the name of the server known to the
client?

//server1/dir/file
– Server can move without client caring

… if the name stays the same.
– If file moves to server2 … we have problems!

Location independence
– Files can be moved without changing the

pathname
//archive/paul

4

Paul Krzyzanowski • Distributed Systems

Where do you find the remote files?
Should all machines have the exact same
view of the directory hierarchy?

e.g., global root directory?
//server/path

or forced “remote directories”:

/remote/server/path

or….

Should each machine have its own
hierarchy with remote resources located
as needed?

/usr/local/games

Paul Krzyzanowski • Distributed Systems

How do you access them?
• Access remote files as local files
• Remote FS name space should be

syntactically consistent with local
name space
1. redefine the way all files are named and

provide a syntax for specifying remote files
• e.g. //server/dir/file
• Can cause legacy applications to fail

2. use a file system mounting mechanism
• Overlay portions of another FS name space over

local name space

Paul Krzyzanowski • Distributed Systems

Name resolution: how to handle ..
Parse

(a) component at a time
versus

(b) entire path at once

(b) is more efficient but…
– Remote server may access and reveal more

if its file system than it wants
– Other components cannot be mounted

underneath remote tree

Perhaps use (a) and cache bindings

Paul Krzyzanowski • Distributed Systems

Stateful or stateless design?
Stateful

– Server maintains client-specific state

• Shorter requests
• Better performance in processing

requests
• Cache coherence is possible

– Server can know who’s accessing what

• File locking is possible

Paul Krzyzanowski • Distributed Systems

Stateful or stateless design?
Stateless

– Server maintains no information on client accesses

• Each request must identify file and offsets
• Server can crash and recover

– No state to lose

• Client can crash and recover
• No open/close needed

– They only establish state

• No server space used for state
– Don’t worry about supporting many clients

• Problems if file is deleted on server
• File locking not possible

Paul Krzyzanowski • Distributed Systems

Caching
Hide latency to improve performance for
repeated accesses

Four places
– Server’s disk
– Server’s buffer cache
– Client’s buffer cache
– Client’s disk

WARNING:
cache consistency

problems

5

Paul Krzyzanowski • Distributed Systems

Approaches to caching
• Write-through

– What if another client reads its cached copy?
– All accesses will require checking with server
– Or Server maintains state and sends

invalidations

• Delayed writes
– Data can be buffered locally (consistency

suffers)
– Remote files updated periodically
– One bulk wire is more efficient than lots of little

writes
– Problem: semantics become ambiguous

Paul Krzyzanowski • Distributed Systems

Approaches to caching
• Write on close

– Admit that we have session semantics

• Centralized control
– Keep track of who has what open on each

node
– Stateful file system with signaling traffic

The End.

