

Rutgers University – CS417: Distributed Systems 1
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

Lectures on Distributed Systems

System Protection and Firewalls

Paul Krzyzanowski

INTRODUCTION

Computer security was an issue since the earliest days of digital computers. The ear-
liest computers, such as the eniac1 and the Colossus2 were designed for military use,
the former to compute ballistic firing tables and the latter to decipher German Lo-
renz3 codes. These were primitive machines: running no operating system, running a
single “process,” and operated by a single user. Nevertheless, security of their data
(or even of their existence, in the case of Colossus) was of paramount importance.
This was achieved via physical security – guarded buildings, armed guards, face-to-face
authentication.

Things have changed since then. We have sensitive data coexisting with data of
others on the same file servers. Multiple processes run on the same machine. As we
started to work a distance and use data communication networks, those networks be-
came avenues for snooping: authentication sessions and data transfers could be
grabbed. To make matters even more complex, we actually want to run other peo-
ple’s code on our machines. It’s unlikely that we will write all the code that runs on
our machines, so we rely on externally-produced operating systems, compilers, and
applications. We are somewhat at ease when these come from trustworthy sources
(trusted vendors, such as Adobe, Macromedia, Apple, et alia) but we also want to run
applications from random parties – applets that are loaded with our web pages or
miscellaneous games that we may spontaneously download. This can open up a Pan-
dora’s box of problems: how do we know that the applications are not performing
malicious acts behind their innocent façade?

1 Completed in 1945 at the Moore School of Electrical Engineering at the University of Pennsylvania.
2 Completed in December 1943 at Bletchley Park in England.
3 The Lorenz cipher was used by the German high command to send classified communications. The Lorenz cipher
was based on the principles of a one-time pad, effectively xor-ing the plaintext with a stream of random text. Since
one-time pads are not practical due to the difficulties of propagating keys, the Lorenz cipher employed a pseudo-
random number generator. This, of course, turned out to be the Achilles heel of the system.

System protection and firewalls

Rutgers University – CS417: Distributed Systems 2
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

ATTACKS

With the advent of data networks, systems have become easier to attack. The ability
to attack from the comfort of one’s own home provides not only comfort, but a sense
of invulnerability (the security guard won’t catch you in the wrong place) and extra
time (you don’t have finish up before the security guard comes around). Scripting
provides the ability to automate attacks that require brute-force trial and error. Social
networking allows hackers to share information and techniques. One does not need
to be a skilled programmer to write a virus: it is often as simple as downloading a vi-
rus kit. Software can also be obtained for snooping on the network, cracking pass-
words, and exploiting known security holes.

SYSTEM PENETRATION

There are numerous techniques for penetrating computer systems. This list only
touches upon them.

Guess a password
Some systems and software comes with default pass-
words. Quite often, these are not changed. The in-
staller’s concern of the moment was on getting the
software installed rather than thinking of the security
implications of not changing the password. Knowledge
of these defaults makes for trivial penetration.

Left to their own devices, most people are not
creative when it comes to selecting passwords. This
creativity is further stifled by the vast preponderance of
passwords that most people are forced to remember.
Given the lack of creativity, guessing a password is often not as onerous a feat as one
might imagine. One form of guessing is known as a dictionary attack. This involves
trying words in a dictionary (Webster4’s, lists of names, or a list of common known
passwords, for example), prefixing and suffixing the words with numbers or symbols,
and trying “tricks” such as substituting ‘0’(zero) for ‘o’ or ‘1’ (one) for ‘l’ (ell). As a
last resort, one can try an exhaustive search over all combinations of letters, numbers,
and symbols.

Social engineering
People tend to trust each other and avoid confrontational situations. This not just a
matter of naïvete but a necessary underpinning of social interaction. Unfortunately,

4 May Unix-derived systems come with a list of words from Webster’s 7th Collegiate dictionary and the Brown Corpus
in the file /usr/dict/words.

A screen will appear and
ask you for a User Name
and Password. Enter admin
(the default) in the User
Name and Password fields.
Then click the OK button.

Figure 1. Step B of the router
configuration instructions from
the Linksys RV082 VPN router
instruction manual.

System protection and firewalls

Rutgers University – CS417: Distributed Systems 3
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

this trust extends to a lack of proper authentication. By studying an organization,
learning some of the acronyms and buzzwords that are representative of the group
one wishes to penetrate, one can pass for an insider. Programs such as finger as well
as personal web pages allow one to learn about people in an organization: likely in-
teractions, chain of command, responsibilities, and working hours. This can further
aid in social infiltration. Would you trust the night shift administrator whom you’ve
never met? How about a purported senior vice president who forgot her password
and is threatening your immediate dismissal if you do not rectify the situation imme-
diately?

A recent abuse of trust comes in the form of phishing: sending email that pur-
ports to come from a trusted party, such as a bank, asking the recipient to validate
their account information by directing them to an authentic looking web page that is
hosted by an imposter.

Trojan horse
Odysseus devised a plan. After ten years into the Trojan war, Greek ships were sent
away and the Trojans believed that the Greeks have surrendered, leaving behind a
gift: a giant wooden horse designed by the artist Epeius. The Trojans dragged the
horse into their walled city. At night, the Greeks hiding in the horse slipped out,
killed the Trojans and set fire to their city.

In computer parlance, a Trojan horse refers to a program that masquerades as an-
other, trusted, program. The classic Trojan horse was a program that would display a
login prompt, leading the user to believe that a computer (or terminal) was unused
and awaiting a user login. The unwary user would enter his credentials (login name
and password). The program would then stash them in a file or send them out via a
network connection and then exit, printing a login incorrect message and executing the
real login program. The user would simply assume that a mistake has been made,
enter the credentials again (this time to the real program), and continue with life,
unaware that his login name and password were compromised. This attack led Mi-
crosoft Windows to encourage the use of pressing control-alt-delete prior to logging
in, since that key combination on PCs cannot be trapped by applications and forces a
response by the kernel.

More recently, Trojan horses have appeared in the form of exploitations of Mi-
crosoft Internet Explorer to redirect traffic to different ip addresses. A novel form of
a Trojan horse was exposed in November of 2004, also targeting Microsoft Internet
Explorer and Windows xp sp2. In this attack, the dialogue window that warns users
that they may be downloading malicious content could be disguised so that the un-
witting user will click on an innocuous-looking message only to install harmful soft-
ware on the computer.

System protection and firewalls

Rutgers University – CS417: Distributed Systems 4
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

Exploit software bugs
Virtually every non-trivial (and much trivial) program has bugs. Big programs tend to
have more bugs than small programs. Poorly or hastily written programs tend to
have many more bugs than well-written and carefully designed programs. Programs
written by huge teams tend to be buggier than those written by a handful of good
programmers. This empirical evidence does not bode well for much of commercial
software, which is often created by large teams under tremendous time constraints
due to market pressure.

Given that most software out there has bugs, some of those bugs may lead to se-
curity exploits. In the worst case, these exploits will allow a user to run any com-
mand, such as a shell. On Microsoft Windows systems, most users operate with ad-
ministrative privileges and, as such, most programs run with administrative
privileges. On Unix-derived systems, some programs are setuid programs. This means
that, upon running, they assume the identity of the owner of the program, not that of
the user running the program as is usually the case. If a user can exploit these pro-
grams then an ordinary user can attain administrative privileges5. Most server soft-
ware runs with administrative privileges, making it ripe for exploit: the software is
accessible via the network and offers powerful privileges if penetrated: an enticing
combination.

One source of bugs is not really bugs at all. Programmers sometimes augment
their software with undocumented options and back-doors to gain access to the sys-
tem. Discovering these can make gaining entry into the system a snap. For example,
poor checking on the syntax and disposition of a url led to web server exploits where
a remote user can execute an arbitrary program on the web server.

Buffer overflow
Of the real bugs in a system, none has attracted more attention than the buffer over-
flow bug. A buffer overflow occurs when a program is reading data into a buffer (e.g.,
input from a user) but the amount of data that is read is greater than the amount of
memory allocated for the buffer. A well-written program would ensure that no addi-
tional data will be written to the buffer beyond its size. However, that means having
another variable to measure the remaining size of the buffer and who wants to bother
coding that when you know that the input data will never exceed your already gener-
ous buffer size. It did not help matters any that one of the more commonly-used
functions in the C standard i/o library is gets, whose purpose is to fill a given buffer
with a line read from the standard input. Unfortunately, the programmer can only
supply the starting address of the buffer, not its size6.

5 Some setuid programs that were exploited in the past include uucp, lpr, sendmail, mount, mkdir, and eject.
6 The similar function, fgets, which allows a programmer to specify a file pointer instead of using stdin, does require
the programmer to specify the buffer size. This function should be used in place of gets.

System protection and firewalls

Rutgers University – CS417: Distributed Systems 5
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

When a buffer is declared locally within a function (in a language that supports
reentrant procedures, such as C or C++), it is allocated on the stack. Writing beyond
the limit of this buffer may overwrite not just other local variables but also the mem-
ory location on the stack where the return address is stored. When the function re-
turns, the modified return address will transfer control to the location of the in-
truder’s choosing, such as code that was placed in the buffer.

Some software attempts to safeguard against this by checking that the return ad-
dress has not been modified during the execution of the function. A buffer overflow
attack that loads arbitrary executable code is difficult to carry out on some processors
whose memory management unit (mmu) allows execution privileges to be turned on
or off per page. Processors such as the Sun sparc, hp Alpha, ibm Powerpc , amd
Opeteron and Athlon 64 ,Transmeta Efficeon, and Intel’s ia-64 architecture support
this feature (which is often known as the nx bit). Unfortunately, today’s dominant
Intel Pentium-family processors do not support this.

 * * *

The network itself has turned out to be a rich source of attacks and an enabler for
penetrating systems.

Fake ICMP or RIP packets
Some routers perform dynamic routers and rely on messages from other routers in
the form of icmp (Internet Control Message Protocol) and rip (Router Information
Protocl). Sending these messages may allow a router to believe that the best route for
packets is via an intruders (or compromised) system or router.

Address spoofing
Some applications base their authentication on the source ip address of a message
(for example, rsh, the remote shell program). An intruder can change a machine’s ad-
dress to that of another system or spoof an ip packet stream to appear to come from
another address. This is best done in conjunction with modifying routes or taking a
machine that rightfully owns the masqueraded address out of service.

ARP cache poisoning
The key to communicating on an ip network is to find the hardware address (mac)
that corresponds to a given ip address. Systems do this via the Address Resolution
Protocol, or arp . A machine broadcasts an arp query and trustingly accepts any re-
sponse. If the response comes from an imposter, it will address its ip packets to that
imposter. Alternatively, an attacker can broadcast arp responses to non-existent mac
addresses, effectively cutting off access to other systems (and routers!).

System protection and firewalls

Rutgers University – CS417: Distributed Systems 6
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

Ping of death
The ping of death is a denial of service attack that is meant to take a machine out of
service by sending it an ip datagram that is larger than the allowable limit of 65,535
bytes. Packets can be fragmented and hackers realized that many operating systems
did not know what do to when the fragments added up to a packet that was larger
than the 64k limit and simply froze up. Most operating systems were patched for this
deficiency by 1997 .

SYN flooding
Another technique used for making a machine appear dead to the network is known
as SYN flooding. The tcp/ip protocol uses a three-way handshake to set up a con-
nection. In the first step, the originator sends a syn packet. In the second step, the
receiver sends an acknowledgement (a syn/ack packet). In the final step, the initiator
acknowledges the receipt of this acknowledgement and the session is established.

Because tcp is a stateful protocol that supports retransmission and in-order de-
livery of packets, the recipient needs to allocate a certain amount of memory for each
connection. Upon receiving the syn , the receiver allocates memory for the new con-
nection. To avoid using up all resources, there is a limit to the number of out-
standing requests. Additional syn messages will be directed to a backlog queue.
Since the backlog queue is also finite, any further syn packets get dropped.

The syn flooding attack works by sending syn packets that are masqueraded to
appear to come from an unreachable host. The receiver sends a syn/ack to this un-
reachable host and eventually times out waiting for the final response. This time-out
period before the pending session is cleaned up is often around 75 seconds.

TCP session hijacking
A sequence number attack is one where the intruder masquerades as one of the end-
points of a tcp connection. Traffic to the target session is monitored (or imposter
packets are sent to generate response traffic) to find the sequence numbers for the
tcp packets of that session. The original machine is then taken out of service (e.g.,
via syn flooding) and the intruder steps in, masquerading as the original machine
and continuing the session with the correct tcp sequence numbers.

UDP spoofing
Spoofing udp packets is trivial compared to spoofing tcp packets. There is no con-
nection setup and no sequence numbers to deal with. Packets can be grabbed of the
network and replayed at a later time or spurious packets can be inserted into an exist-
ing communication session at will.

 * * *

System protection and firewalls

Rutgers University – CS417: Distributed Systems 7
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

Many network services themselves have holes (bugs or lapses in authentication). A
sender’s address can be masqueraded with smtp (Simple Mail Transfer Protocol).
While not an intrusion, this is useful for social engineering. The sendmail program,
still one of the most popular email servers, has been debugged for decades. The fin-
ger dæmon is useful for social engineering – finding out about people by running the
finger command. It also used to be vulnerable to a buffer overflow attack because of
its use of gets.

Remote Procedure Calls
Remote procedure calls are another source of problems. Unauthenticated, they

can allow any client to execute a remote procedure on the machine. The easiest, and
most common, way to use rpc is without authentication. In fact, authentication was
not even present in its earliest instantiation from Sun. If an intruder has control of a
system offering rpc services, it may be able to fake the port mapper or replace the
real service with that of an imposter. Finally, the rpc subsystem itself may be vulner-
able. A number of security holes were uncovered in 2003 in Microsoft’s Distributed
Component Object Model (dcom) where hackers could send an improperly format-
ted rpc message to cause a buffer overflow and allow them to run their own code on
that system.

Other network services
In addition to exploiting rpc holes on the server, nfs ’s stateless design lets you use a
file handle in the future, even if the file system is no longer exported. Moreover, even
if authentication is enabled, nfs data is not encrypted. Someone capable of snooping
on the network may see unencrypted file chunks of files.

Services such as rlogin (remote login), rsh (remote shell), and ftp (file transfer
protocol) send their authentication credentials (login and password) in plain text.
Anyone who can snoop on the network can grab the user’s login and password.
Moreover, as a convenience rsh and rlogin allow the use of .rhosts and
/etc/hosts.equiv to list trusted hosts and short-circuit the annoying process of asking
for a login and password. If intruders can either masquerade as a trusted machine or
modify one of these files then they can gain access to the system.

A client-server based windowing system such as X-windows is potentially vul-
nerable to tcp sequence number attacks. For example, an intruder can tap into an
open terminal session and take it over.

Internet Explorer
At the time of this writing, Microsoft’s Internet Explorer (ie) web browser is the
most-used browser, enjoying over 90% of the browser market. As such, it enjoys the
status of probably being the world’s most actively hacked program.

System protection and firewalls

Rutgers University – CS417: Distributed Systems 8
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

The benefits of finding holes in are realized if you can get someone to navigate
to your website and download something that will open up their computer to either
allowing you to run an arbitrary command, redirect their urls or modify their regis-
try. In recent years, bugs capable of system penetration were found in malformed
urls, buffer overflows, ActiveX flaws, bugs with png and jpeg graphics, Jscript, and
the processing of xml object data tags.

Many more
The number of services exploited is too voluminous (and pointless) to mention.
Other services include remote administration servers (e.g., Microsoft BackOffice),
Java applets, Visual Basic scripts, shell scripts, and many, many others.

WORMS AND VIRUSES

One form of intrusion involves not targeting a specific computer but rather spread-
ing an attack through a vast number of systems. Programs that behave in this way fall
under the category of worms and viruses.

A worm is a process that spawns copies of itself. It is a self-contained program
that attempts to connect to other systems (exploiting some security hole) and repli-
cate itself onto that system, ad infinitum. In the best case, it is a harmless process that
does nothing but propagate. More commonly, it will use up system resources, possi-
bly spawning multiple copies on the same machine. In the worst case, it can run ma-
licious software that will destroy files, send spam, or launch a distributed denial of
service attack7.

The worm that brought worms to the public eye was Robert Tappan Morris,
Jr.’s Internet worm of 1988 . It started off by exploiting the gets buffer overflow bug
in the finger daemon to load a small bootstrap program onto the target machine (this
program was only 99 lines of C code). The bootstrap program then connected back
to the originator and downloaded the full worm. This worm then searched for other
machines to which it could propagate through one of four methods:

- It searched user directories for .rhost files that designated other trustworthy
machines that would not need a password for logging in via rsh or rlogin.

- It attempted to exploit the buffer overflow bug in the finger daemon.
- Some versions of sendmail had a debug mode that allowed a remote user to

get a shell with administrative privileges. It tried to connect to the mail
server on other machines on the network and exploit this bug.

7 A distributed denial of service (ddos) attack is an attack where a number of computers gang up on one system, satu-
rating it with network activity to render it dead (unresponsive) to the rest of the world.

System protection and firewalls

Rutgers University – CS417: Distributed Systems 9
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

- It tried guessing users’ passwords via a dictionary attack, using 432 com-
mon passwords and combinations of the account name and the user’s full
name.

The worm was written only for dec vax systems running the 4.x bsd system
and Sun 3 systems running SunOS. It was not intended to cause damage but a bug in
the code caused it to spread repeatedly within a machine, filling up its process table.

 * * *

A virus does not run as a self-contained process. Instead, it is code that is aug-

mented onto some other body of code. The classic form of a virus has been a file in-
fector, where the virus attaches copies of itself to one or more programs on the com-
puter. When those programs are run, they execute the virus code and may then
choose to resume executing the original program (for example, the virus might check
the date and, if it is not April 1st, just continue with the progam). File infectors have
been problems primarily on systems without adequate protection mechanisms. If a
user does not have permission to modify installed programs and system files, the vi-
rus, running under the user’s credentials, will not be able to affix itself to any of these
programs. Unfortunately, the world’s dominant operating systems (Windows 3.1,
Windows 95, 98, …) were such systems. Another place where viruses might install
themselves would be in the boot sector of a disk. This gives them a chance to run at
boot-time, before the operating system is run.

These days, the most common viruses are Visual Basic scripts sent via email at-
tachments. These attachments are often disguised to appear to be photos or other
innocuous material.

PENETRATION FROM WITHIN

The classic threat model assumes that penetration attempts come from adversaries
from the outside. The other threat that an organization has to deal with is damage
control from the effects of a successful intrusion. Once malicious software is loaded
onto a computer, that computer becomes vulnerable to whatever actions that soft-
ware undertakes. It has full access to the internal network, other computers, and data
on the system.

Adware
Adware is a program that displays ads to the user, either through pop-up windows,
on the application, or via browser redirection. In its most innocent instantiation, it is
an intrinsic part of a program that the user installed and exists for defraying pro-
gramming costs (you pay less or nothing for the software but are forced to see ads –
migrating the tv and radio model to the computer). In other cases, it is a separate

System protection and firewalls

Rutgers University – CS417: Distributed Systems 10
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

program that is installed without the user’s knowledge. In some cases, it may pass on
information about the user or monitor the user to make a decision on which ads to
serve.

Dialers
A dialer is a program that uses the computer’s modem to create a connection to the
Internet. It is an essential piece of software for those still using modems. Malicious
software can change the dialing preferences8 to use premium-rate (ripoff-rate) long
distance telephony services. This software is often installed via a web-page download
after ActiveX controls are enabled via a Visual Basic script in an email message. In
some cases, a user may inadvertently install a dialer, falling prey to advertising that
claims an improved network connection or extra services. Needless to say, all these
attacks target Microsoft Windows systems.

Spyware
Spyware encompasses the class of programs that send any information about the user
over the network without the user’s knowledge. In some cases, this is coupled with
adware; either for sending user information over the network or for targeting specific
ads for the user. One particularly insidious form of spyware is the key logger. A key
logger is a program that records every keystroke (and mouse movement as well). Mi-
crosoft Windows provides a generic mechanism, called a hook, that programs can use
to intercept system calls. These hooks can be chained, so that a request to execute a
system call may pass through several hooks. A key logger installs hooks via the Set-
WindowsHookEx Win32 api function to capture key up, key down (wm_keyboard)
and mouse events (wh_mouse).

PROTECTION BY THE OPERATING SYSTEM

The principal purpose of an operating system is to provide controlled and authorized
access to resources. For example, the process scheduler provides access to the cpu .
The memory management unit (hardware that is configured by the operating system)
provides controlled access to memory, allowing each process to have its own address
space and disallowing one to access another’s memory. Device drivers provide con-
trolled, exclusive access to system devices. Certain devices are never accessible to
normal processes. File systems provide an abstraction for accessing logical regions of
persistent data, ensuring that access permissions are obeyed. Sockets provide a con-
trolled mechanism to send and receive messages over a network.

8 Again, an example of insufficient protection on the part of the operating system.

System protection and firewalls

Rutgers University – CS417: Distributed Systems 11
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

ACHIEVING SECURITY: THE FOUR A’S

Security has several aspects to it. We can think of it as the four A’s: Authentication,
Authorization, Accounting, and Auditing.

AUTHENTICATION

Authentication refers to the process of identification: validating that the user is not
an imposter. The traditional method used by operating systems to authenticate a user
via a login process, where the user supplies credentials consisting of a login name and
a password. This is a bad idea if done over a network without having established a
covert communication channel first since the entire session can be snooped upon. A
covert channel can be established by generating a common key with a Diffie-
Hellman key exchange or using public keys to exchange a session key. In either case,
unless the public key comes from a trusted source, no authentication has been per-
formed. However, the resultant session key will not be known to other parties and
can be used to set up an encrypted session (using a symmetric encryption algorithm)
that can carry out the login-password authentication.

Other authentication techniques that may be used include:
- one-time passwords (S-key, rsa, SecureID).
- Challenge-response.
- Shared secret keys and nonce-based authentication, although this requires

that the keys have been distributed via a secure channel (e.g., skid).
- Public key authentication. This requires that the public key come from a

trusted source or be a digital certificate that is signed by a verifiable, trusted
party.

AUTHORIZATION

Authorization is responsible for access control once a user has been identified. A
decision has to be made whether a request (to get a shell, access a file, access a server,
et al.) is accepted or denied. Operating systems generally rely on access control lists
(acl) for regulating access to objects within the system. An access control list is asso-
ciated with each object (e.g., a file) and enumerates a list of users and groups and the
access permissions that each one has. The user and group ids are associated with the
user’s processes upon login.

In a networked environment, a network service is often a process that is running
under its own user id (or, worse yet, with administrative privileges). It is responsible
for the veracity and proper authentication of network messages that it processes. In
some cases, neither the process nor the system may even know of the user. This is
fine for anonymous services (e.g., accessing a web page) but problematic if authenti-
cation is required. In this case, the server may rely on a trusted third party that will

System protection and firewalls

Rutgers University – CS417: Distributed Systems 12
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

grant credentials to the session. Kerberos is an example of such a system that is based
on shared secret keys and an untrusted network. When the user’s process presents
the server with a Kerberos ticket, Kerberos can validate that the user has been
granted access to the service simply by decrypting the message to extract a session
key and validating that the user indeed possesses that key.

In an environment where the network (at least, the internal network) is trusted,
a system such as radius9 can be used. radius is a trusted server that can store arbi-
trary authentication and authorization credentials. A service passes the collected user
information to the radius server, which validates the authentication credentials and
returns authentication information to the requesting service. It may also log the
transaction for accounting purposes.

ACCOUNTING

Should security be breached, the first questions that pop up are: what happened? Who
did it? How did it happen?

Do answer these questions requires the ability to examine events of the past. To
do this, events of potential interest must be logged. What to log is very much de-
pendent on the level of paranoia in an organization, performance issues, and the
amount of logs one is willing to have. Some useful things to log are user logins, user
logouts, network requests for service, the creation of new accounts or deletion of old
ones, automatic execution of jobs (e.g., cron jobs), and any system configuration
changes. More detailed items to log are database transactions and a command trace
per user.

Since a skilled intruder is likely to clear any logs, it helps to send the logs to a
remote logging server (hopefully one that is well secured from attacks).

Intrusion detection software has been written to scan through various system logs.,
actively monitor system activity and analyze network traffic. The administrator is
alerted when “unusual” activity is detected. The challenge, of course, is defining what
is meant by “unusual activity.” Thus far, these systems have not been very successful.

AUDITING

Auditing is the process of validating the system configuration and going through the
software source code and searching for security holes. It requires access to the source
code for all applications (and operating system) that need to be audited as well as
highly experienced staff. More importantly, it requires time. Auditing does not en-
sure or prove security but is form of testing the software and eliding constructs that
are known to have security holes. Few systems have been thoroughly audited. The
OpenBSD operating system installation is one of them.

9 Remote Authentication Dial-In User Service. It is described in rfc 2138. Microsoft’s implementation of this is
called the Internet Authentication Service (IAS).

System protection and firewalls

Rutgers University – CS417: Distributed Systems 13
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

Complex systems are, of course, much more difficult to audit. For example,
Windows 2000 is estimated to contain between 35 and 60 million lines of code and
the prospect of a thorough audit is dim.

DEFENDING THE SYSTEM

Defending the system from malicious software that may already have entered the
computer involves:

- Restricting access privileges. An ordinary user should not run with adminis-
trative privileges. This will decrease the operations that malicious software
can perform and the files that a virus can infect.

- Virus checking. There is no magic in detecting whether a program has been
modified with a virus. All that can be done is to scan the program for bit
patterns that correspond to instructions present in any of the tens of thou-
sands of viruses that have been identified thus far. New viruses will come
out next year and the virus scanning software will need to be augmented
with those patterns.

- Personal firewall. Since malicious software is likely to send data over the
network, it becomes necessary to monitor and restrict the individual appli-
cations that can access the network. A personal firewall, such as Zone Alarm
from Zone Labs, installs hooks in the operating system to intercept opera-
tions that access the network and allow users to allow or deny them explic-
itly. The problem with this, of course, is that users need to be somewhat
educated in understanding which applications can and should access the
network legitimately and which ones should not.

CODE SIGNING

To guard against installing code from untrusted parties, one can require that the
software be digitally signed by a trusted provider and validated prior to installation.
This is what Microsoft does with their Authenticode code signing system. A software
publisher registers themselves with the VeriSign certification authority, creates an
rsa public key pair, and obtains a class 3 software publisher’s certificate. Prior to be-
ing made available to the public, a signature is generated by hashing the software and
encrypting the hash with the publisher’s private key, This signature and the associ-
ated digital certificate are added to the code as part of the signature block. Prior to
installing the software, the recipient validates the certificate and validates that the
code hashes to the same value as the decrypted signature.

System protection and firewalls

Rutgers University – CS417: Distributed Systems 14
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

Figure 2. Screening router

DEFENDING THE NETWORK

While we’d like to communicate with all machines: those on our network and other
systems, we do not want systems trying to penetrate our network. Certain network
services, such as database access or perhaps even a network login, may need to be
present on some of our machines but should not be accessible by others outside of
our local network. We basically have two domains of machines: a trusted domain
(our machines on our network or networks) and an untrusted domain – all the exter-
nal machines.

The next step is to isolate this trusted group of machines from the rest of the un-
trusted world. In some cases, this may be easy: move all the machines onto a private
network and do not allow untrusted people onto the machines or the network. Un-
fortunately we are often not content to remain disconnected from the rest of the
world (there’s a lot of cool stuff out there). A solution is to protect the junction be-
tween a trusted internal network of computers from the external network with a fire-
wall.

The two major approaches to building a firewall are packet filtering and applica-
tion proxies.

PACKET FILTERING

Packet filtering is the selective routing of packets between internal and external
hosts. This firewall serves as a form of a gateway that forwards packets from one
network to another, allowing only certain packets to flow into the internal network.
Packets can be accepted or blocked from transmission in a way that reflects the secu-
rity policy of a site. A router that can perform packet filtering is known as a screening
router (Figure 2).

Ordinary routers simply look at the destination
address of each packet and pick the best interface on
which to send the packet to its destination. A screening
router, on the other hand, determines the route
(destination) and also decides whether the packet
should be routed or dropped. Most routers and firewall
products support packet filtering.

Various fields of each packet header are examined:
- ip source address
- ip destination address
- Protocol (tcp , udp , icmp)
- tcp/udp source port
- tcp/udp destination port
- icmp message type

System protection and firewalls

Rutgers University – CS417: Distributed Systems 15
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

Any or all of these may be used to accept or deny a packet. In addition, since the
router knows the interface on which the packet arrives and the interface on which the
packet goes out. Packet filtering allows the decision of allowing or blocking a packet
to be based on any or all of these eight components. To set up packet filtering rules
effectively, one needs to have an intimate knowledge of tcp or udp port utilization.

Filtering rules are generally processed a line at a time, which each line repre-
senting a set of ip header parameters that need to be matched. A match on line indi-
cates whether the packet should be allowed to be routed, dropped, or whether addi-
tional rules should be processed.

For example, to block all incoming connections from systems outside the inter-
nal network except those for the smtp (mail) server, we may choose to do the fol-
lowing:

 allow dest_port=25
 deny interface=external

The first rule matches any packets whose destination port is 25 (the port on which
the smtp server listens) and allows them to be routed. The second rule matches all
other packets that arrive from the external interface and drops them.

We may also choose to allow connections from specific machines or networks.
For instance, let us suppose we want to do the following:

Allow any machine to connect to the web server (tcp port 80 for http ;
port 443 for https) that we have running on the system with address
12.34.5.6 and allow any machine to connect to the mail server (port 25)
that is running on the machine with address 12.34.5.7. We also want
only machines in the subnet 19.8.*.* to be able to connect to the telnet
port (23) on any machine within 12.34.5.*. All other packets should be
dropped.

We can set up the following rules:

Type source address source
port

destination ad-
dress

destina-
tion port

In-
ter-
face

action

0 * 123.34.5.0/24 * * * 1 deny
1 tcp * >1023 12.34.5.6 80 1 allow
2 tcp * >1023 12.34.5.6 443 1 allow
3 tcp * >1023 12.34.5.7 25 1 allow
4 tcp 19.8.0.0/16 >1023 12.34.5.0/24 23 1 allow
5 * * * * * 0 allow
6 * * * * * deny

The above table identifies two interfaces: “1” refers to the external interface (connec-
tion to the Internet) and “0” refers to the internal interface (connection to our local
area network). Note the addition of rules 0 and 5. Rule 0 instructs the packet filter to

System protection and firewalls

Rutgers University – CS417: Distributed Systems 16
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

drop any packets coming from the Internet whose source address is that of the local
network. This prevents IP masquerading, where an external packet is disguised to
look like an internal one. Rule 5 allows any packet from the internal network to be
routed to the external network.

 We may set filters to block any connections from certain systems or block ac-
cess to all “dangerous services” such as tftp, X windows, rpc, r-commands (rlogin, rsh,
rcp)10.

One problem with the blind filtering provided by screening routers is that it is
done with no context – each packet is examined on its own with no regard to previ-
ous packets. Without maintaining state, a router cannot tell, for example, whether a
return packet is in response to an established connection. For instance, if you estab-
lish a connection to a mail server, it should be able to talk back to you over the ad-
dress and port that matches the original port. A simple packet filter would simply
have to keep all ports open in the outbound direction. In other cases, we might want
to block tcp data packets until a valid tcp connection has been established. Again,
the packet filter would need to maintain state to know that a connection has been
established between two endpoints. Finally, as a more complex example, ftp has a
client connect to the server (on port 21) but any data transfers require that the server
establish another connection back to the client. If we had a “smart” packet filter, it
could expect and allow the secondary connection only if the first one has been ac-
cepted. Packet filters that can keep track of connection state and make decisions
based upon it are called stateful packet filters11.

A screening router will generally sit between the internal and external network.
It has an enormous responsibility. It needs to do routing as well as make filtering de-
cisions. It is the only protection for the internal network: if its security fails or is
compromised, the internal network is exposed. For this reason, the software that
comprises the firewall should be simple (less code yields less bugs) and offer as few
services as possible. It will not run network services, compilers, or have a lot of ac-
counts. It will know the addresses of its routers on both the inside and outside and
not issue queries for them. It will not allow packets to enter that appear as if they are
from the internal network (masquerading; see rule 0 in the table on the previous
page). For detailed information on firewalls and advice on installing them, take a look
at Bill Cheswick and Steven Bellovin’s book Firewalls and Internet Security.

PROXY SERVICES

A screening router (packet filter) can allow or deny access to a service, but it cannot
protect operations within a service. These are known as protocol attacks. An example is

10 These are considered dangerous because they perform username, password authentication in cleartext over an unen-
crypted channel.
11 The service provided by such a filter is often called s p i : Stateful Packed Inspection.

System protection and firewalls

Rutgers University – CS417: Distributed Systems 17
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

Figure 3. Dual-homed host proxy

trying to enter debug mode in sendmail or sending large amounts of bogus data trying
to create a buffer overflow.

Proxy services are a set of specialized applications or server programs that run
on a firewall host. This host is typically a dual-homed host. This means that the host
has two network adapters: one interface on the internal network and another on the
external network. This allows the host to know explicitly which packets are coming
from the outside and not worry about forged source addresses. The dual-homed host
on which the proxy service runs on is also a bastion host. This is a term for a machine
where extra effort has been taken to make it highly secure because it is exposed to the
Internet and is vulnerable to attack. Securing every machine on the system is difficult
but certain machines, such as proxies, deserve the extra effort. A bastion host will not
have many user accounts and will have only the minimal system installation needed
to run services (no compilers). The less tools that intruders have to work with, the
less damage they can do.

Proxy programs take requests for Internet services (e.g. FTP) and forward them
to the actual services. Proxies provide replacement connections and act as gateways
for these services. Another term for a proxy is an appliaction-level gateway.

Proxies sit between a user on the inside (internal network) and a service on the
outside (Internet); see Figure 3. Ideally, proxies should
be transparent and present the illusion that the user is
dealing with a real server. Proxies are effective only in
environments where direct communication is re-
stricted between internal and external hosts. Dual-
homed machines or packet filters can accomplish this.
A proxy makes sure that the final server never gets
packets that came from the Internet – those packets are
picked up by the proxy; the final server only talks with
the proxy.

Proxies can provide stateful inspection of data.
They can examine a session and have the ability to look
at the data (content) on the session. In addition, a proxy
can provide authentication facilities for applications that have weak or no authentica-
tion.

As an example of content-specific filtering, consider SMTP mail filtering on
Checkpoint Software Technologies’ Firewall-1™ product. It provides the following
capabilities:

- mail address translation. The original From address of outgoing mail is re-
written to a generic address (to conceal internal network structure).

- redirect To addresses.
- drop mail originating from a given set of addresses.
- strip mime attachments of specific types.

System protection and firewalls

Rutgers University – CS417: Distributed Systems 18
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

Figure 4. Screened host architecture

- strip the Received information from outgoing mail (also to hide the inter-
nal structure).

- drop mail messages above a given size.
- perform anti-virus checks on incoming messages/attachments
- do not allow the application to connect to the ever-buggy sendmail inside

the network. Instead, enqueue the messages locally into a cache on the
firewall, and dequeue them onto sendmail.

This particular product, representative of high-grade commercial firewalls, also
has knowledge of other applications, such as telnet, ftp, rlogin, rsh, and http. It also al-
lows support for a number of authentication schemes.

FIREWALL ARCHITECTURES

DUAL-HOMED HOST ARCHITECTURE

A dual-homed host architecture is built around a dual-homed host computer with at
least two network interfaces. The ability to route between the two networks is dis-
abled so that IP packets from one network (e.g., Internet) are not routed to the other
(e.g., internal). See Figure 3.

Services are provided by proxies or by having users log into the dual-homed host
directly. Two problems with this architecture are that user accounts on the dual-
homed host present significant security problems and that proxies may not be avail-
able for all services.

SCREENED HOST ARCHITECTURE

A screened host architecture (Figure 4) provides
services from a host attached to the internal
network. Primary security is provided by packet
filtering. Only certain connections are permitted
(e.g., deliver email). Connections may also be
disallowed from the outside to any internal hosts
except for a bastion host running proxy services.
The bastion host will be connected on the same
internal network as other internal machines.

SCREENED SUBNET ARCHITECTURE

We can add an extra layer of security to the
screened host architecture by adding a perimeter

System protection and firewalls

Rutgers University – CS417: Distributed Systems 19
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

Figure 5. Screened subnet

network that further isolates the internal network. This perimeter network is known
as a DMZ, or Demilitarized Zone (Figure 5).

The reason for doing this is that bastion hosts
are the most vulnerable machines on your network.
They are most likely to be attacked because they can
be attacked (they’re the only ones accepting any
packets from the outside network). With a screened
host architecture, there is no defense between the
bastion host and other internal machines: should the
bastion host be penetrated, the entire internal
network is instantly vulnerable. By isolating the
bastion host(s) on a perimeter network, you can
reduce the impact of a break-in.

The design of a screened subnet architecture
consists of two screening routers:

- one sits between the perimeter
network and the internal network

- the other sits between the perimeter network and the Internet
An attacker would have to get through both routers to penetrate the internal

network. There is no single vulnerable point that will compromise the internal net-
work.

It is also possible to create a layered series of perimeter networks between the
outside world and the interior network. Less trusted (more vulnerable) services are
placed onto perimeter networks, removed from the interior network.

The two screening routers serve the following functions:
Interior router (choke router)

- protects the internal network from the Internet and DMZ. It performs
most of the packet filtering for the firewall

- allows selected services outbound from the internal network to the
Internet (services that don’t go through proxies, such as telnet or ftp).

- limits the services between a bastion host and the internal network.
This reduces the number of machines that can be attacked from the
bastion host if it is compromised.

Exterior router (access router)
- protects both the DMZ and the internal network from the Internet.
- generally allows almost anything outbound from the DMZ (perform-

ing little packet filtering)
- generally performs the same outbound rules as the interior router (al-

lowing any internal packets to get out)
- this router is often provided by the ISP and should have rules suffi-

cient to protect the machines in the DMZ, disallow forged packets

System protection and firewalls

Rutgers University – CS417: Distributed Systems 20
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

(which appear to come from the internal network), and allow access
only to the services provided by the DMZ.

To support proxies, the interior router should allow packets from the internal
network if they are communicating with the bastion host. The exterior router should
allow packets only from the bastion host to the outside.

The basic principles of firewalling are:
- It is easier to secure one or a few machines than a large number of ma-

chines on a LAN.
- Focus effort on the bastion host(s) since only they are accessible from

the external network.
- All traffic between the outside and inside must pass through a firewall.
- The internal (private) network should never see security attacks.

TCP WRAPPERS

tcp wrappers are a mechanism orthogonal to firewalls and packet filters that is used
to restrict access to tcp services on a particular host. The idea is to allow only cer-
tain originating ip addresses to execute authorized services. All requests can be
monitored and logged.

On most Unix environments, a process called inetd listens for connections to an
enumerated set of services. These services may include ftp, rpc, rsh, rlogin, telnet,
rcp, and others. When a client connects to the listening inetd process, inetd simply
executes the requested process (based on port) and gives the socket to that process.
With tcp wrappers in place, inetd is replaced with a new daemon process, tcpd. This
process behaves just like inetd but instead of blindly passing connections to the re-
quested services, tcpd first checks permission files to validate that the requesting host
is indeed allowed access to the service or is explicitly disallowed access.

VIRTUAL PRIVATE NETWORKS (VPN)

A Virtual Private Network (vpn) is an alternative to a dedicated communication line
between two points (a private network). A vpn provides users with the illusion that
they are directly and privately connected to a remote network via a private network
even though a public Internet infrastructure is used in the connection.

Let us first take a look at private networks. If two networks are connected via a
private line, the router at each network will be configured to route packets destined
to the other network over the private line.

A virtual private network relies on tunneling. Tunneling links two network de-
vices such that the devices appear to exist on a common, private backbone. It is ac-
complished by taking all ip packets destined to machines on the remote network and

System protection and firewalls

Rutgers University – CS417: Distributed Systems 21
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

encapsulating them within an ip header directed to a router that listens on the re-
mote side. As far as the connecting [public] network is concerned, all data is just a set
of ip datagrams going to one port on one remote machine.

When the remote system (router) gets the packet, it extracts the data, which
happens to be a full ip packet that belongs on that network. It is then placed on the
network and sent to its destination within the network.

The Internet standard for vpns is known as ipsec and is described in rfcs
1825-1827. It provides ip-layer security mechanisms for both ipv4 and ipv6. These
include authentication and encryption. ipsec comprises two parts: the authentication
header (ah) and the encapsulating security payload (esp). The authentication header
is essentially a digital signature for the packet. It is an extra header that is added to
the packet that contains an encrypted hash of the unchanging part of the packet (e.g.,
fields such as a decrementing time-to-live are not part of the hash). ipsec uses a
shared secret key for its encryption. The esp allows each outgoing ip datagram to be
encrypted. This encrypted data is placed within an unencrypted IP header for rout-
ing the datagram to its destination over the public network. Upon receipt, the data is
decrypted and the resultant, encapsulated, ip datagram is routed within the private
network. A protocol that is conceptually similar to ipsec is pptp , the point-to-point
tunneling protocol. This is an extension to ppp (point-to-point protocol) that was
developed by Microsoft. It encapsulates not just ip packets, but also ipx and
NetBEUI packets. Because of its past flawed security and the less prevalent support
among routers, it is not as widely used as ipsec .

System protection and firewalls

Rutgers University – CS417: Distributed Systems 22
© 2000-2004 Paul Krzyzanowski, All Rights Reserved

REFERENCES

Building Secure and Reliable Network Applications, Kenneth P. Birman, © 1996 Manning Publi-
cations Co.

Firewalls and Internet Security, William R. Cheswick and Steven M. Bellovin, Addi-
son-Wesley © 1994 AT&T Bell Laboratories.

Internet Authentication Service for Windows 2000, White Paper, © 2000 Microsoft
Corporation.

Sequence Number Attacks, by Rik Farrow, UnixWorld.
www.networkcomputing.com/unixworld/security/001.txt.html

