
1

CS 417

Programming with
SUN RPC

CS 417
Distributed Systems

2

CS 417

Remote Procedure Call

• remote procedures appear local through stub functions
• stub functions have the same functional interface

– communicate with server
– await results from server

client code

client stub
marshal params
send to server
wait for response

unmarshal results
return to client

server stub

server function

create socket
register port
accept connections

receive message
unmarshal params
call server function

marshal return
send back results

initialize connection

Remote procedure calls appear local because a local procedure exists that provides
the same interface.
This procedure gathers up the parameters and converts them into a flat, pointerless
representation that is sent as a network message to a server. This data conversion is
known as marshaling.
N.B.: pointers are useless on the remote side since they refer to local memory
locations.

The server, upon receiving the message, reassembles the parameters into a form that
is readable on that machine (correct byte ordering, word sizes, etc.) and calls the
user-written server function. Upon return from the server function, any return value
is marshaled into a network message and sent back to the client.
The client receives the return message, unmarshals the data, and returns it back to
the calling client code.

3

CS 417

Stub function generation

• Programming languages do not support Sun RPC.
– A separate pre-compiler, rpcgen, must be used

• Input:
– Interface definition language

• Output:
– server main routine
– client stub functions
– header file
– data conversion functions, if needed

RPC is a language construct, meaning it is a property of the programming language
(since it deals with the semantics of function calls).
However, no languages support Sun RPC, so a pre-compiler must be used to
generate the stub functions on the client and the server.

The Sun RPC compiler is called rpcgen. As input, it takes a list of remote
procedures (interfaces) defined in an interface definition language (IDL).

The output from rpcgen is a set of files that include:
server code: main function that sets up a socket, registers the port with a name
server, listens for and accepts connections, receives messages, unmarshals
parameters, calls the user-written server function, marshals the return value, and
sends back a network message.
client stub: code with the interface of the remote function that marshals parameters,
sends the message to the server, and unmarshals the return value
header: contains definitions of symbols used by client and server as well as
function prototypes
data conversion functions: a separate file may be generated if special functions
need to be called to convert between local data types and their marshaled forms.

4

CS 417

Interface Definition Language

• Used by rpcgen to generate stub functions
• defines an RPC program: collection of RPC procedures
• structure:
type definitions

program identifier {
version version_id {

procedure list
} = value;
…

} = value;

program PROG {
version PROG1 {

void PROC_A(int) = 1;
} = 1;

} = 0x3a3afeeb;

The Interface Definition Language (IDL) is the one bit of input needed by rpcgen to generate the
stub functions.
The structure of IDL is vaguely similar to a set of C prototype definitions.
Note that any similarity to C is essentially coincidental: RPC IDL is a separate definition language
that is not C.
Each IDL program contains the following structure:

- optional constant definitions and typedefs may be present
- the entire interface is enveloped in a program block. The sample on the right gives a name PROG
to the set of interfaces and a numeric value of 0x3a3afeeb. Sun decreed that each collection of RPC
interfaces is identified by a 32 bit value that you have to select. The restrictions given are:

0x00000000-0x1fffffff: defined by sun
0x20000000-0x3fffffff defined by the user
0x40000000-0x5fffffff transient processes
0x60000000-0x7fffffff reserved

- within the program block, one or more sets of versions may be defined. A client program will
always request an interface by asking for a {program#, version#} tuple. Each version contains a
version name and number. In the sample on the right, the version name is PROG1 and the number is
1.
- within each version block, a set of functions is defined. These look similar to C prototypes and are
tagged with a function number (each function gets a unique number within a version block).

5

CS 417

Data types

• constants
– may be used in place of an integer value - converted to #define

statement by rpcgen

const MAXSIZE = 512;

• structures
– similar to C structures - rpcgen transfers structure definition and

adds a typedef for the name of the structure
struct intpair { int a, b };

is translated to:
struct intpair { int a, b };
typedef struct intpair intpair;

6

CS 417

Data types
• enumerations

– similar to C
enum state { BUSY=1, IDLE=2, TRANSIT=3 };

• unions
– not like C
– a union is a specification of data types based on some criteria:

union identifier switch (declaration) {
case_list

}

– for example:
const MAXBUF=30;
union time_results switch (int status) {

case 0: char timeval[MAXBUF];
case 1: void;
case 2: int reason;

}

enumerations
- defines that state can have the value of one of the symbols: BUSY, IDLE, or
TRANSIT. The symbols are defined to be the values 1, 2, and 3 respectively.
unions
- very different from C (similar to discriminated unions of Pascal or ADA)
The example shows that the union has a field of status. If status is set to 0, then the
union also has a character array called timeval. If status is set to 1, then the union
has no other fields, and if status is set to 2, then the union has an integer field called
reason.

7

CS 417

Data types

• type definitions
– like C:

typedef long counter;

• arrays
– like C but may have a fixed or variable length:

int proc_hits[100];
defines a fixed size array of 100 integers.

long x_vals<50>
defines a variable-size array of a maximum of 50 longs

• pointers
– like C, but nit sent over the network. What is sent is a boolean

value (true for pointer, false for null) followed by the data to which
the pointer points.

8

CS 417

Data types
• strings

– declared as if they were variable length arrays
string name<50>;

declares a string of at most 50 characters.
string anyname<>;

declares a string of any number of characters.
• boolean

– can have the value of TRUE or FALSE:
bool busy;

• opaque data
– untyped data that contains an arbitrary sequence of bytes - may be fixed or variable

length:
opaque extra_bytes[512];
opaque more<512>;

– latter definition is translated to C as:
struct {

uint more_len; /* length of array */
char *more_val; /* space used by array */

}

9

CS 417

Writing procedures using Sun RPC
• create a procedure whose name is the name of the RPC definition

– in lowercase
– followed by an underscore, version number, underscore, “svc”
– for example, BLIP→ blip_1_svc

• argument to procedure is a pointer to the argument data type specified
in the IDL

• default behavior: only one parameter to each function
– if you want more, use a struct
– this was relaxed in later versions of rpcgen but remains the default

• procedure must return a pointer to the data type specified in the IDL
• the server stub uses the procedure’s return value after the procedure

returns, so the return address must be that of a static variable

10

CS 417

Sample RPC program

• Start with stand-alone program that has two functions:
– bin_date returns system date as # seconds since Jan 1 1970 0:00

GMT
– str_date takes the # of seconds as input and returns a formatted

data string

• Goal
– move bin_date and str_date into server functions and call them via

RPC.

11

CS 417

Stand-alone program
#include <stdio.h>

long bin_date(void);
char *str_date(long bintime);

main(int argc, char **argv) {
long lresult; /* return from bin_date */
char *sresult; /* return from str_date */
if (argc != 1) {

fprintf(stderr, "usage: %s\n", argv[0]);
exit(1);

}
/* call the procedure bin_date */
lresult = bin_date();
printf("time is %ld\n", lresult);
/* convert the result to a date string */
sresult = str_date(lresult);
printf("date is %s", sresult);
exit(0);

}

12

CS 417

Stand-alone program: functions
/* bin_date returns the system time in binary format */
long bin_date(void) {

long timeval;
long time(); /* Unix time function; returns time */

timeval = time((long *)0);
return timeval;

}

/* str_date converts a binary time into a date string */
char *str_date(long bintime) {

char *ptr;
char *ctime(); /* Unix library function that does the work */

ptr = ctime(&bintime);
return ptr;

}

13

CS 417

Define remote interface (IDL)

• Define two functions that run on server:
– bin_date has no input parameters and returns a long.
– str_date accepts a long as input and returns a string

• IDL:
program DATE_PROG {

version DATE_VERS {
long BIN_DATE(void) = 1;
string STR_DATE(long) = 2;

} = 1;
} = 0x31423456;

• IDL convention is to suffix the file with .x
– we name the file date.x
– it can be compiled with:

rpcgen -C date.x

function
numbers

version number
program number

We have to envelope our two functions in a version block. This in turn has to be
enveloped in a program block.
Each function is assigned an arbitrary number.
We pick a number for the program number and hope that nobody on our server will
pick the same one.
When the file (date.x) is compiled with rpcgen -C date.x (the -C is to produce ANSI
C function declarations), we get:
date.h: header file
date_clnt.c: client stub
date_svc.c: server stub

14

CS 417

Generating server functions: templates from rpcgen
• We can have rpcgen generate a template for the server code using the interface

we defined:
rpcgen -C -Ss date.x >server.c

• This produces:
#include “date.h”
long *
bin_date_1_svc(void *argp, struct svc_req *rqstp)
{

static long result;
/* insert server code here */
return &result;

}

char **
str_date_1_svc(long *argp, struct svc_req *rqstp)
{

static char *result;
/* insert server code here */
return &result;

}

Note:
- the names we selected for the procedures have been modified: converted to lower-
case and suffixed with an underscore, version, underscore, “svc”.
- each function has an extra parameter: struct svc_req *rstp. We generally won’t
use this, but it’s the request structure that allows us to find out about where the
request is coming from.
- the input parameter is a pointer to the type we asked for.
- the return parameter is also a pointer to the type we asked for.
- static results are generated. This is important because we return the address of the
result. The address of a local variable lives on the stack and may be overwritten
once a function has returned.

15

CS 417

Generating server functions: plug in the code
• Now just copy the functions from the original stand-alone code
long *
bin_date_1_svc(void *argp, struct svc_req *rqstp)
{

static long result;
long time();
result = time((long *)0);
return &result;

}

char **
str_date_1_svc(long *bintime, struct svc_req *rqstp)
{

static char *result;
char *ctime();

result = ctime(bintime);
return &result;

}

we don’t need to use &bintime here
because we get the address as a parameter

For the first function, we don’t use any incoming parameters, so we ignore the
argument.
As guided by the template code, we return a pointer to the return type. The auto-
generated code made result static so that the data won’t be out of scope when
bin_date_1_svc returns.

For the second function, the first parameter is a pointer to the binary time (we
renamed it to bintime, which is more meaningful than argp). The return value is
stored in result.
Once again, we return a pointer to the data type we’re interested in. In this case, we
want a char *, so we return a pointer to that – a char **.

16

CS 417

Generating the client: get the server name
• We need to know the name of the server

– use getopt library function to accept a -h hostname argument on the
command line.

extern char *optarg;
extern int optind;
char *server = "localhost"; /* default */
int err = 0;

while ((c = getopt(argc, argv, "h:")) != -1)
switch (c) {
case 'h':

server = optarg;
break;

case '?':
err = 1;
break;

}
/* exit if error or extra arguments */
if (err || (optind < argc)) {

fprintf(stderr, "usage: %s [-h hostname]\n", argv[0]);
exit(1);

}

We now modify our main program (client) to accept a parameter –h hostname.

We’ll use getopt just to make life easier in the future when we may want to add
more options.

17

CS 417

Generating the client: add headers and create client handle
• We need a couple of extra #include directives:

#include <rpc/rpc.h>
#include “date.h”

• Before we can make any remote procedure calls, we need to initialize
the RPC connection via clnt_create:
CLIENT *cl; /* rpc handle */
cl = clnt_create(server, DATE_PROG, DATE_VERS, “netpath”);

• Program and version numbers are defined in date.h.
• “netpath” directs to read the NETPATH environment variable to

decide on using TCP or UDP
• The server’s RPC name server (port mapper) is contacted to find the

port for the requested program/version/transport.

The main program needs a couple of headers: rpc/rpc.h, which defines rpc structures
(such as the client handle) and date.h, which defines our remote functions.

Then we need to establish a connection with the server. To do this, we define a
client handle and call clnt_create. This will contact the RPC name server to find the
port number on the server for the requested program and version.
The “netpath” transport tells clnt_create to use look at the NETPATH environment
variable to select the transport protocol (Linux does not support this). You can also
explicitly state “tcp” or “udp”.

18

CS 417

Generating the client: modify calls to remote functions

• Client’s calls to bin_date and str_date have to be modified:
– add version number to the function
– add a client handle as a parameter (from clnt_create)
– always pass a single parameter (NULL if there is none)

bin_date_1(NULL, cl);
str_date_1(&value, cl);

The names of the remote functions are changed to reflect the version number and to
reflect the restriction of passing a single parameter and a client handle. Sun RPC
now supports multiple parameters but the default is to use the original behavior – if
you need multiple parameters, put them into a struct.

19

CS 417

Generating the client: check for RPC errors

• Remember: remote procedure calls may fail!
– add code to check return value
– a remote procedure call returns a pointer to the result we want
– if the pointer is null, then the call failed.

long *lresult; /* return from bin_date_1 */
if ((lresult=bin_date_1(NULL, cl))==NULL) {

clnt_perror(cl, server); /* failed! */
exit(1);

}

• if bin_date_1 succeeds, the result can be printed:
printf("time on %s is %ld\n", server, *lresult);

20

CS 417

Generating the client: check for RPC errors (2)

• Same for the call to str_date:

char **sresult; /* return from str_date_1 */
if ((sresult=str_date_1(lresult, cl)) == NULL) {

/* failed ! */
clnt_perror(cl, server);
exit(1);

}

• if the call to str_date_1 succeeds, then print the result:

printf("date is %s", *sresult);

21

CS 417

Compile - link - run

• Generate stubs
rpcgen -C date.x

• Compile & link the client and client stub
cc -o client client.c date_clnt.c -lnsl

• Compile & link the server and server stub
cc -o server -DRPC_SVC_FG server.c date_svc.c -lnsl

– Note: defining RPC_SVC_FG compiles the server such that it will
run in the foreground instead of running as a background process

• Run the server (e.g. on remus)
$./server

• Run the client
$./client -h remus
time on localhost is 970457832
date is Sun Oct 1 23:37:12 2000

		2002-02-24T16:48:53-0500
	Paul Krzyzanowski

