
CS 416: Operating Systems Design March 31, 2015

© 2014 Paul Krzyzanowski 1

Operating Systems
Week 10. Assignment 7 Discussion

Paul Krzyzanowski

Rutgers University

Spring 2015

1 March 31, 2015 © 2015 Paul Krzyzanowski

File Systems & Everything is a File

• File systems

– Typically used to store & organize data

– Implemented over block devices (disks and flash memory)

• “Everything is a file”

– Evolved through the history of UNIX (& BSD, Plan 9, Linux)

– Devices appear as files

• Names in the file system name space

• inode contains major & minor device number

• Requests are sent to the device driver

March 31, 2015 © 2015 Paul Krzyzanowski 2

Pseudo devices and files

• Device files can refer to software drivers

– No underlying device

/dev/zero – read an infinite # of 0 bytes

/dev/random – return random bytes

• File systems can be software drivers too

– No underlying block device

– File system driver under VFS presents something that looks like a

file system

– Example:

/proc – process file system: get kernel & process information

March 31, 2015 © 2015 Paul Krzyzanowski 3

File Systems as a Name Space

• File system name space is a powerful abstraction

– Easy to understand: users & programs know how to browse, read,

and write files

– Easy to work with: GUI tools, command-line utilities, scripts, and

programming language interfaces

• Example

– Change the maximum # of file handles the kernel will allocate

 echo 8192 > /proc/sys/fs/file-max

– Look at the computer’s name

 cat /proc/sys/kernel/hostname

– Change it

 echo myname.pk.org > /proc/sys/kernel/hostname

– No need for extra commands or system calls!

March 31, 2015 © 2015 Paul Krzyzanowski 4

FUSE: Filesystem in USErspace

FUSE enables a file system to run as a normal user process

• FUSE file system module

– Conduit to pass data between VFS and the user process that

implements the file system

March 31, 2015 © 2015 Paul Krzyzanowski 5

ls -l /tmp/myfs/test

system call libraries (glibc)

System call processing

VFS

FUSE ext4fs other file systems

system call libraries (glibc)

libfuse

samplefs /tmp/myfs

user-level file system running as a process
program accessing the user-level file system

Getting information

FUSE is maintained at fuse.sourceforge.net

– Source code

– Documentation

– Examples

March 31, 2015 © 2015 Paul Krzyzanowski 6

CS 416: Operating Systems Design March 31, 2015

© 2014 Paul Krzyzanowski 2

FUSE components

• The program that implements the file system links with the FUSE

library (libfuse)

• FUSE consists of:

– Kernel module (fuse.ko)

• File system module (fusefs) and character device (/dev/fuse)

– User-space library (libfuse.so)

– Mount utility (fusermount) to mount the file system onto the namespace

• Your user-level file system is linked with the FUSE library (libfuse.so)

March 31, 2015 © 2015 Paul Krzyzanowski 7

How it works (at the simplest level!)

• FUSE kernel module

– Redirects VFS calls to the user-level library via the /dev/fuse character

device

• The main program in your file system (fuse_main):

– Parses arguments and calls fuse_mount()

– Opens /dev/fuse

• Each process that opens /dev/fuse gets a different file descriptor

– Reads VFS file system calls from /dev/fuse

– Calls file system functions stored in fuse_operations struct

• These are functions you write to implement the file system

– Results written back to /dev/fuse via the file descriptor

 March 31, 2015 © 2015 Paul Krzyzanowski 8

The life of a user-level file system

March 31, 2015 © 2015 Paul Krzyzanowski 9

fuse_main()

fuse_mount()

file descriptor, fd

fuse_new()

data structure

fuse_loop()

session exit

uninstall file

system

process session

The argument to the command

contains the mount point – create a

mount point in the file system and

get a file descriptor

Allocates struct fuse – a data

structure to keep a cached image of

file system data

Get VFS calls from /dev/fuse and call

functions in struct fuse_operations.

Results written back to /dev/fuse

FUSE Operations

• Defined in struct fuse_operations

– Not all of these need to be implemented – depends on what the file

system needs to do

– This is a high-level overview & not a complete list

Read the documentation!

• Operations: file system
– void *(*init) (struct fuse_conn_info *conn);

• Initialize your file system

– int (*statfs) (const char *, struct statvfs *);

• Provide file system statistics

– void (*destroy) (void *);

• Clean up your file system – free any allocated data

March 31, 2015 © 2015 Paul Krzyzanowski 10

File & Directory create/move/delete

– int (*mknod) (const char *, mode_t, dev_t);

• Create a file node (device file or named pipe)

– int (*mkdir) (const char *, mode_t);

• Create a directory

– int (*unlink) (const char *);

• Remove a file

– int (*rmdir) (const char *);

• Remove a directory

– int (*symlink) (const char *, const char *);

• Create a symbolic link (pointer to a file or directory)

– int (*rename) (const char *, const char *);

• Rename a file or directory

– int (*link) (const char *, const char *);

• Create a hard link to a file (alias)

March 31, 2015 © 2015 Paul Krzyzanowski 11

Directory data operations

– int (*opendir) (const char *, struct fuse_file_info *);

• Open directory

• Unless the 'default_permissions' mount option is given, this method should check if

opendir is permitted for this directory

• opendir may return an arbitrary filehandle in the fuse_file_info structure

– This will be passed to readdir, closedir and fsyncdir.

– int (*readdir) (const char *, void *, fuse_fill_dir_t, off_t,

struct fuse_file_info *);

• Read directory

– int (*releasedir) (const char *, struct fuse_file_info *);

• Release directory

– int (*fsyncdir) (const char *, int, struct fuse_file_info *);

• Synchronize directory contents

March 31, 2015 © 2015 Paul Krzyzanowski 12

CS 416: Operating Systems Design March 31, 2015

© 2014 Paul Krzyzanowski 3

File attribute operations

– int (*getattr) (const char *, struct stat *);

• Get file attributes

– int (*setxattr) (const char *, const char *, const char *, size_t, int);

• Set extended attributes

– int (*getxattr) (const char*, const char*, char*, size_t);

• Get extended attributes

– int (*listxattr) (const char *, char *, size_t);

• List extended attributes

– int (*removexattr) (const char *, const char *);

• Remove extended attributes

– int (*readlink) (const char *, char *, size_t);

• Read the target of a symbolic link

– int (*chmod) (const char *, mode_t);

• Change the permission bits of a file

– int (*chown) (const char *, uid_t, gid_t);

• Change the owner and group of a file

March 31, 2015 © 2015 Paul Krzyzanowski 13

File operations

– int (*open) (const char *, struct fuse_file_info *);

• Open a file

– int (*flush) (const char *, struct fuse_file_info *);

• Flush any cached data for an open file

• Called when a file is closed

– int (*fsync) (const char *, int, struct fuse_file_info *);

• Synchronize file contents

– int (*create) (const char *, mode_t, struct fuse_file_info *);

• Create and open a file. If the file does not exist, first create it with the specified mode,

and then open it.

March 31, 2015 © 2015 Paul Krzyzanowski 14

File data operations

– int (*truncate) (const char *, off_t);

• Change the file size to a given offset

– int (*read) (const char *, char *, size_t, off_t, struct fuse_file_info *);

• Read bytes of data from an open file

– int (*write) (const char*, const char*, size_t, off_t,

 struct fuse_file_info *);

• Write bytes of data to an open file

– int (*flush) (const char *, struct fuse_file_info *);

• Flush any cached data for an open file

• Called when a file is closed

March 31, 2015 © 2015 Paul Krzyzanowski 15

Assignment 7 Overview

• Create a user-level math file system (mathfs)

– Runs via FUSE

• The root of mathfs comprises seven directories

• Each directory represents a mathematical function:

1. /factor - Computes the prime factors of a number.

2. /fib - Computes the first n fibonacci numbers.

3. /add - Adds two numbers

4. /sub - Subtracts two numbers.

5. /mul - Multiplies two numbers.

6. /div - Divides two numbers.

7. /exp - Raises a number to a given exponent.

March 31, 2015 © 2015 Paul Krzyzanowski 16

Assignment 7 Overview

• Suppose you mount your file system on /tmp/math

– Create a directory /tmp/math: mkdir /tmp/math

– Run the program, giving it the mount point: ./mathfs /tmp/math

• The command

 cat /tmp/math/factor/12782

will produce the prime factors of 12782:

 2
 7

 11

 83

• The command

 cat /tmp/math/add/6/4

will produce the sum of 6+4

 10

March 31, 2015 © 2015 Paul Krzyzanowski 17

First, run the demo: get it

Before starting the assignment, be sure that you can use

FUSE and run the “hello, world” demo

– See fuse.sourceforge.net

March 31, 2015 © 2015 Paul Krzyzanowski 18

CS 416: Operating Systems Design March 31, 2015

© 2014 Paul Krzyzanowski 4

Running the demo: compile it

• The “hello, world” file system is < 100 lines long

• Download hello.c

– http://fuse.sourceforge.net/helloworld.html

• Compile it:

cc -o hello hello.c -D_FILE_OFFSET_BITS=64 –lfuse

March 31, 2015 © 2015 Paul Krzyzanowski 19

You need to

explicitly define

64-bit file offsets

Link with the fuse

library

Executable file:

hello

Source file: hello.c

Running the demo: run it

• Create a mount point: any directory
 mkdir hitest

• Run the hello file system, telling it to use hitest as the

mount point

 ./hello hitest

• hello runs in the background

– Be aware of this when debugging your program!

– You have to remember to unmount the file system when done!

./fusermount –u hitest

March 31, 2015 © 2015 Paul Krzyzanowski 20

Running the demo: test it

We now have the file system running. Test it out:

$ ls -l hitest

total 0

-r--r--r-- 1 root root 13 Dec 31 1969 hello

There’s just one file in there called hello. Let’s look at it:

$ cat hitest/hello

Hello World!

It doesn’t do much but it works!

We can see the process hello is still running

$ ps x |grep hello

15806 ? Ssl 0:00 ./hello hitest

March 31, 2015 © 2015 Paul Krzyzanowski 21

Running the demo: stop it

When we’re done, unmount the file system

$ fusermount –u hitest

This causes the process to exit

March 31, 2015 © 2015 Paul Krzyzanowski 22

this is our mount point

Running the demo: debugging

Running hello with a -d flag enables debug logging

$./hello hitest -d

• Use another window for typing commands since log

output goes to the screen

• Great way to see what functions are being called

March 31, 2015 © 2015 Paul Krzyzanowski 23

this is our mount point

ls calls:

• getxattr (not implemented)

• readdir

• releasedir

cat hello calls:

• lookup

• open

• read

• getattr

• flush (not implemented)

• release

Minimal implementation

• FUSER passes in dozens of VFS functions

• You don’t need to implement those you don’t use

• The “Hello, World!” demo implements only four!

March 31, 2015 © 2015 Paul Krzyzanowski 24

static struct fuse_operations hello_oper = {

 .getattr = hello_getattr,

 .readdir = hello_readdir,
 .open = hello_open,

 .read = hello_read,

};

CS 416: Operating Systems Design March 31, 2015

© 2014 Paul Krzyzanowski 5

Minimal implementation

• Some implementations can be hard-coded

– Everything in the “Hello, World!” demo is

– Example, readdir returns a directory listing

• The demo supports only one directory with one file

March 31, 2015 © 2015 Paul Krzyzanowski 25

static const char *hello_path = "/hello";

static int hello_readdir(const char *path, void *buf,

 fuse_fill_dir_t filler, off_t offset, struct fuse_file_info *fi)

{

 (void) offset;

 (void) fi;

 if (strcmp(path, "/") != 0)

 return -ENOENT;

 filler(buf, ".", NULL, 0);

 filler(buf, "..", NULL, 0);

 filler(buf, hello_path + 1, NULL, 0);

 return 0;

}

Assignment 7 Implementation

Implement & debug each of the 7 math functions

– Make sure they work before plugging them into the file system

– Handle ALL errors: overflow, divide by 0, bad data

– You can always return an error message but don’t die!

March 31, 2015 © 2015 Paul Krzyzanowski 26

Assignment 7 Implementation

• Then, create a basic file system that doesn’t implement

the operations but parses pathnames & returns dummy

data

• At a minimum, you will need to implement

– getattr: get attribute of a file; don’t bother with timestamps

– readdir

• At the top level, you should show these directories

– factor fib add sub mul div exp

• Within each directory, you should show just one directory

– doc: contains usage info for that function

– open

• Parses the pathname to get the operation & numbers and produce the

results

March 31, 2015 © 2015 Paul Krzyzanowski 27

Assignment 7 Implementation

• Finally, tie the implementation of the functions into the file

system and test everything!

March 31, 2015 © 2015 Paul Krzyzanowski 28

The End

March 31, 2015 29 © 2015 Paul Krzyzanowski

