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( Apache Pig

- Why?
— Make it easy to use MapReduce via scripting instead of Java
— Make it easy to use multiple MapReduce stages
— Built-in common operations for join, group, filter, etc.

» How to use?
— Use Grunt — the pig shell
— Submit a script directly to pig
— Use the PigServer Java class
— PigPen — Eclipse plugin

* Pig compiles to several Hadoop MapReduce jobs

( Pig: Loading Data

Load/store relations in the following formats:

 PigStorage: field-delimited text

* BinStorage: binary files

* BinaryStorage: single-field tuples with a value of bytearray
» TextLoader: plain-text

» PigDump: stores using toString() on tuples, one per line
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Can we make MapReduce easier?
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Apache Pig
Count Job Pig Framework Hadoop
(in Pig Latin) Execution
« Parse
A= LOAD ‘myfile’ AS (x, , 2); + Check « Map: Filter
B = FILTER A by x>0; + Optimize + Reduce: Counter
C = GROUP B by x; « Plan Execution
D = FOREACH A GENERATE + Submit jar to Hadoop
X, COUNT(B); « Monitor progress
STORE D into ‘output’;
. J
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Example
log = LOAD ‘test.log’' AS (user, timestamp, query);
grpd = GROUP log by user;
cntd = FOREACH grpd GENERATE group, COUNT(log);
fitrd = FILTER cntd BY cnt > 50;
srtd = ORDER fltrd BY cnt;
STORE srtd INTO ‘output’;
+ Each statement defines a new dataset
— Datasets can be given aliases to be used later
+ FOREACH iterates over the members of a "bag”
— Input is grpd: list of log entries grouped by user
— Output is group, COUNT(log): list of {user, count}
 FILTER applies conditional filtering
» ORDER applies sorting
- J
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MapReduce isn’t always the answer

» MapReduce works well for certain problems
— Framework provides

. « Automatic parallelization

See pig.apache.org « Automatic job distribution

for full documentation

* For others:
— May require many iterations
— Data locality usually not preserved between Map and Reduce
« Lots of communication between map and reduce workers

&
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( Bulk Synchronous Parallel (BSP) [ Bulk Synchronous Parallel (BSP)

» Computing model for parallel computation

« Series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization

o g Superstep 0 Superstep 1 Superstep 2 Superstep 3 Superstep 4 Superstep 5
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Bulk Synchronous Parallel (BSP) Bulk Synchronous Parallel (BSP)
« Series of supersteps « Series of supersteps
. + Processes (workers) are randomly . » Messaging is restricted to the end of a
1. Concurrent computation assigned to processors 1. Concurrent computation computation superstep
2. Communication « Each process uses only local data 2. Communication « Each worker sends a message to 0 or
. i . + Each computation is asynchronous of . . . more workers
3. Barrier synchronization 3. Barrier synchronization - These are inputs for the next

other concurrent computation
+ Computation time may vary End of superstep: Start of superstep:
Messages received Messages delivered
by all workers to all workers
Input msgs
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Input msgs

il

Paul Krzyzanowski



Cs 417

Bulk Synchronous Parallel (BSP)

J

« Series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization

+ The next superstep does not begin until
all messages have been received

dependency can be created

+ Provide an opportunity to checkpoint
results for fault tolerance

- Iffailure, restart computation from last
superstep

« Barriers ensure no deadlock: no circular

- 7/
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Superstep 1

Input msgs

Input msgs
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BSP Implementation: Apache Hama

* Hama: BSP framework on top of HDFS
— Provides automatic parallelization & distribution
— Uses Hadoop RPC
« Data is serialized with Google Protocol Buffers
— Zookeeper for coordination (Apache version of Google’s Chubby)
« Handles notifications for Barrier Sync

» Good for applications with data locality
— Matrices and graphs
— Algorithms that require a lot of iterations

hama.apache.org

Hama programming (high-level)

J

* Pre-processing
— Define the number of peers for the job
— Split initial inputs for each of the peers to run their supersteps
— Framework assigns a unique ID to each worker (peer)

« Superstep: the worker function is a superstep
— getCurrentV ge() — input messages from previous superstep
— Compute — your code
— send(peer, msg) — send messages to a peer
— sync() — synchronize with other peers (barrier)

* File IO
— Keyl/value model used by Hadoop MapReduce & HBase
— readNext(key, value)

— write(key, value)

.~ Bigtable

=
For more information

« Architecture, examples, API

* Take a look at:
— Apache Hama project page
« http://hama.apache.org
— Hama BSP tutorial
* https://hama.apache.org’/hama_bsp_tutorial.html
— Apache Hama Programming document
« http://bit.ly/1aiFbXS

apache.

p 1_06.pdf

Graph computing

Paul Krzyzanowski
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Graphs are common in computing

« Social links
— Friends
— Academic citations
— Music
— Movies

* Web pages
» Network connectivity
* Roads

« Disease outbreaks
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Processing graphs on a large scale is hard Pregel: a vertex-centric BSP
» Computation with graphs Input: directed graph
— Poor locality of memory access — Avertex is an object
— Little work per vertex « Each vertex uniquely identified with a name
- . . + Each vertex has a modifiable value
« Distribution across machines h . )
w0 C ) — Directed edges: links to other objects
- Colmmunlcatlon complexity « Associated with source vertex
— Failure concerns + Each edge has a modifiable value
« Solutions « Each edge has a target vertex identifier
— Application-specific, custom solutions
— MapReduce or databases
« But require many iterations (and a lot of data movement)
— Single-computer libraries: limits scale
— Parallel libraries: do not address fault tolerance
— BSP: close but too general
blogspot. le-graph-computing-at le.html
- J &
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Pregel: computation Pregel: termination
Computation: series of supersteps Pregel terminates when every vertex votes to halt
— Same l_Jser—defmed function runs on feach vertex « Initially, every vertex is in an active state
+ Receives messages sent from the previous superstep Acti i te duri "
+ May modify the state of the vertex or of its outgoing edges — Active vertices compute during a superstep
« Sends messages that will be received in the next superstep » Each vertex may choose to deactivate
— Typically to outgoing edges itself by voting to halt
— But can be sent to any known vertex
M " — The vertex has no more work to do
« May modify the graph topology .
. . L — Will not be executed by Pregel
* Each superstep ends with a barrier (synchronization — UNLESS the vertex receives a message
point) + Then it is reactivated v
. " . o . lertex
Will stay active until it votes to halt again State Machine
« Algorithm terminates when all vertices are
inactive and there are no messages in transit
- J - J
2 2
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Pregel: output Examples of graph computations
+ Output is the set of values output by the vertices * Shortest path to a node
i — Each iteration, a node sends the shortest distance received to all
« Often a directed graph neighbors
— May be non-isomorphic to original since edges & vertices can be « Cluster identification
added or deleted — Each iteration: get info about clusters from neighbors.
... Or summary data — Add myself
— Pass useful clusters to neighbors (e.g., within a certain depth or size)
* May combine related vertices
« Output is a smaller set of disconnected vertices representing clusters of
interest
» Graph mining
— Traverse a graph and accumulate global statistics
» Page rank
— Each iteration: update web page ranks based on messages from
incoming links.
- J N J

Paul Krzyzanowski 4



Cs 417

20 November 2017

=
Simple example: find the maximum value

» Each vertex contains a value

* In the first superstep:
— Avertex sends its value to its neighbors
* In each successive superstep:
— If a vertex learned of a larger value from its incoming messages,
it sends it to its neighbors
— Otherwise, it votes to halt

 Eventually, all vertices get the largest value

* When no vertices change in a superstep, the algorithm
terminates

=
Simple example: find the maximum value

1. vertex value type; 2. edge value type
(nonel!); 3. message value type

Semi-pseudocode:

class MaxValueVertex
: public Vertex<int, void, int> {
void Compute (Messagelterator *msgs) {
int maxv = GetValue();
for (; !'msgs->Done(); msgs->Next()) § .
maxv = max (msgs.Value(), maxv); } find maximum value
if (maxv > GetValue()) || (step == 0)) {
*MutableValue () = maxv;
OutEdgelterator out = GetOutEdgeIterator();
for (; 'out.Done(); out.Next()) send maximum
sendMessageTo (out.Target () , maxv) } value to all
} else edges
VoteToHalt() ;
}
}

L b J

Superstep 0

Superstep 1

Superstep 0: Each vertex propagates its own value to connected vertices

Superstep 1: V, updates its value: 6 > 3
V; updates its value: 6 > 1
V; and V, do not update so vote to halt

L O Active vertex O Inactive vertex

~
Simple example: find the maximum value

2

Superstep 2

L N

6 6’/6—3\6
(oo

Superstep 3: V, receives a message — becomes active
V; receives a message — becomes active
No vertices update their value — all vote to halt

Superstep 3

Done!

Q© Active vertex  (0) Inactive vertex

e N
Simple example: find the maximum value
Superstep 0
Superstep 1
Superstep 2
Superstep 2: V; receives a message — becomes active
V3 updates its value: 6 > 2
V4, V,, and V3 do not update so vote to halt
L O Active vertex O Inactive vertex )
P
( ) . 7
Summary: find the maximum value
Superstep 0
Superstep 1
Superstep 2
Superstep 3
Active vert Inactive vert
L QO Active vertex (D) Inactive vertex )
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Locality Pregel API: Basic operations
« Vertices and edges remain on the machine that does the * Auser subclasses a Vertex class
computation « Methods
— Compute(Messagelterator*): Executed per active vertex in each superstep
« Messagelterator identifies incoming messages from previous supersteps
* To run the same algorithm in MapReduce — GetValue(): Get the current value of the vertex
— Requires chaining multiple MapReduce operations — MutableValue(): Set the value of the vertex
— Entire grap-h Stat.e must be passed from Map to Redlce — GetOutEdgelterator(): Get a list of outgoing edges
... and again as input to the next Map « .Target(): identify target vertex on an edge
« .GetValue(): get the value of the edge
« .MutableValue(): set the value of the edge
— SendMessageTo(): send a message to a vertex
* Any number of messages can be sent
+ Ordering among messages is not guaranteed
« A message can be sent to any vertex (but our vertex needs to have its ID)
- J & J
P : N s . R
Pregel API: Advanced operations Pregel API: Advanced operations
Combiners Aggregators
« Each message has an overhead — let's reduce # of messages - Handle global data
— Many vertices are processed per worker (multi-threaded) . .
— Pregel can combine messages targeted to one vertex into one message * Avertex can provide a value to an aggregator during a
« Combiners are application specific superstep . )
— Programmer subclasses a Combiner class and overrides Combine() method — Agdgregator combines received values to one value
. X — Value is available to all vertices in the next superstep
« No guarantee on which messages may be combined
» User subclasses an Aggregator class
4 15
s 12 * Examples
1 24 71 1 — Keep track of total edges in a graph
5 11 — Generate histograms of graph statistics
6 15 — Global flags: execute until some global condition is satisfied
Combiner Combiner . . .
Sums input messages Minimum value — Election: find the minimum or maximum vertex
- J & J
® u
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Pregel API: Advanced operations
Topology modification
* Examples
— If we’re computing a spanning tree: remove unneeded edges i
— If we're clustering: combine vertices into one vertex Pregel DeSIgl’l
» Add/remove edges/vertices
» Modifications visible in the next superstep
. . J - J
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Execution environment Partition assignment
« Many copies of the program . » Master determines # partitions in graph
are started on a cluster of machines I . .
i » One or more partitions assigned to each worker
] — Partition = set of vertices
* One copy becomes the master 8 — Default: for N partitions
— Will not be assigned a portion of the graph L
— Responsible for coordination © 80Rack ] hash(vertex ID) mod N = worker
80 computers
h )
i May deviate: e.g., place vertices representing the same web site in one
« Cluster’s name server = chubby 1,000s to ﬁ)lgglfrcumpu(ers par¥ition 9P P ¢
— Master registers itself with the name service
— Workers contact the name service — More than 1 partition per worker: improves load balancing
to find the master
» Worker
— Responsible for its section(s) of the graph
— Each worker knows the vertex assignments of other workers
- J & J
( . N I - =
Input assignment Computation
+ Master assigns parts of the input to each worker * Master tells each worker to perform a supefstep |
— Data usually sits in GFS or Bigtable « Worker: Deliver messages
— lterates through vertices (one thread per partition _
* Input = set of records — Calls Compute() method for each active vertex Compute
_ Record = vertex data and edges - Del|ve.rs messages from the previous superstep
. . — Outgoing messages
— Assignment based on file boundaries
« Sent asynchronously
« Delivered before the end of the superstep
» Worker reads input « When done
— If it belongs to any of the vertices it manages, messages sent — worker tells master how many vertices will be active in the next
locally superstep
— Else worker sends messages to remote workers « Computation done when no more active vertices in the
cluster
« After data is loaded, all vertices are active — Master may instruct workers to save their portion of the graph
- J & J
® 0
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Handling failure Pregel outside of Google
+ Checkpointing
— Controlled by master ... every N supersteps
— Master asks a worker to checkpoint at the start of a superstep
« Save state of partitions to persistent storage
— Vertex values
— Edge values .
— Incoming messages ApaChe Glraph
— Master is responsible for saving aggregator values — Initially created at Yahoo
« Master sends “ping” messages to workers — Used at Facebook to analyze the social graph of users
— If worker does not receive a ping within a time period — Runs under Hadoop MapReduce framework
= Worker terminates * Runs as a Map-only job
— If the master does not hear frc?m a worker + Adds fault-tolerance to the master by usinngoKeeper for coordination
= Master marks worker as failed « Uses Java instead of C++ == Chubby
» When failure is detected
— Master reassigns partitions to the current set of workers
— All workers reload partition state from most recent checkpoint
. J - . J
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Conclusion
* Vertex-centric approach to BSP
» Computation = set of supersteps
— Compute() called on each vertex per superstep L.
— Communication between supersteps: barrier synchronization Spark: Generalizing MapReduce
* Hides distribution from the programmer
— Framework creates lots of workers
— Distributes partitions among workers
— Distributes input
— Handles message sending, receipt, and synchronization
— A programmer just has to think from the viewpoint of a vertex
» Checkpoint-based fault tolerance
- J & J
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Apache Spark High-level view
» Goal: Generalize MapReduce » Job = bunch of transformations & actions on RDDs
— Similar shard-and-gather approach to MapReduce
— Add fast data sharing & general DAGs
+ Generic data storage interfaces
— Storage agnostic: use HDFS, Cassandra database, whatever
— Resilient Distributed Data (RDD) sets
+ An RDD is a chunk of data that gets processed — a large collection of stuff Client (Driver Program) Cluster
— In-memory caching Manager
. . Spark
» More general functional programming model Context
— Transformation and action
— In Map-Reduce, transformation = map, action = reduce
- J & J
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( . i N (. 7
High-level view Worker node
« Cluster manager breaks the job into tasks » One or more executors
« Sends tasks to worker nodes where the data lives — JVM process Cluster Manager
— Talks with cluster manager Executor [
— Receives tasks
+ JVM code (e.g., compiled Java, [ Task ] [ Task ] [ Task ]
Clojure, Scala, JRuby, ...)
+ Task = transformation or action [ Cache ]
Client (Driver Program) Spark Cluster — Data to be processed (RDD) i
— E— Manager * Local to the node
ien parl
~ Cache [ = ]
« Stores frequently-used data in memory
+ Key to high performance
Workers
. J - J
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Data & RDDs Properties of RDDs
+ Data organized into RDDs: + Immutable
— Big data: partition it across lots of computers = You cannot change it - only create new RDDs

— The framework will eventually collect unused RDDs

* How are RDDs created? * Typed

1. Create from any file stored in HDFS or other storage supported in — Contain some parsable data structure — e.g., key-value set
Hadoop (Amazon S3, HDFS, HBase, Cassandra, etc.)

* Cre from — and th n other RDD:
« Created externally (e.g., event stream, text files, database) Created fro and thus dependent on othe s

— Either original source data or computed from one or more other RDDs
« Example:

— Query a database & make query the results an RDD « Partitioned — parts of an RDD may go to different servers

— Function can be defined for computing each split
— Default partitioning function = hash(key) mod server_count

— Any Hadoop InputFormat, such as a list of files or a directory
2. Streaming sources (via Spark Streaming)
+ Ordered (optional)
— Elements in an RDD can be sorted

« Fault-tolerant stream with a sliding window
3. An RDD can be the output of a Spark transformation function
« Example, filter out data, select key-value pairs

- J & J
( . N s : N
Operations on RDDs Spark Transformations
» Two types of operations on RDDs
. map(func) Pass each element through a function
 Transformations func
~ Lazy - not Compu‘?d immediately o ) filter(func) Select elements of the source on
— Transformed RDD is recomputed when an action is run on it which func returns true
* Work backwards: . )
flatmap(func) Each input item can be mapped to 0 or

— What RDDs do you need to apply to get an action?
— What RDDs do you need to apply to get the input to this RDD?
— RDD can be persisted into memory or disk storage sample(withReplacement, fraction, Sample a fraction fraction of the data,
seed) with or without replacement, using a
given random number generator seed

more output items

* Actions
— Finalizing operations
* Reduce, count, grab samples, write to file

union(otherdataset) Union of the elements in the source
data set and otherdataset

distinct([numtasks]) The distinct elements of the source
dataset
- J & J
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Spark Transformations Spark Actions
groupByKey([numtasks]) When called on a dataset of (K, V) reduce(func) Aggregate elements of the dataset
pairs, returns a dataset of (K, seq[V]) using func.
pairs
llect(func, task Ret Il el ts of the dataset
reduceByKey(func, [numtasks]) Aggregate the values for each key ColEEt L IEiasis ) a:::;; elements ot the dataset as
using the given reduce function
count Return the number of elements in the
sortByKey([ascending], [numtasks])  Sort keys in ascending or descending 0 dataset
order
firstf Return the first element of the dataset
join(otherDataset, [numtasks]) Combines two datasets, (K, V) and (K, et ! !
W) into (K, (V, W))
take(n) Return an array with the first n
elements of the dataset
cogroup(otherDataset, [numtasks]) Given (K, V) and (K, W), returns (K,
Seq[V], Seq[W]) k ple(withReplacement, Return an array with a random sample
fraction, seed) of num elements of the dataset
cartesian(otherDataset) For two datasets of types T and U,
returns a dataset of (T, U) pairs
- J & J
= s
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Spark Actions Data Storage
» Spark does not care how source data is stored
saveAsTextFile(path) Write dataset elements as a text file — RDD connector determines that
— E.g., read RDDs from tables in a Cassandra DB; write new RDDs
saveAsSequenceFile(path) Write dataset elements as a Hadoop to Cassandra tables
SequenceFile
countByKey () For (K, V) RDDs, return a map of (K,
Int) pairs with the count of each key + RDD Fault tolerance
— RDDs track the sequence of transformations used to create them
foreach(func) Run func on each element of the — Enables recomputing of lost data
dataset A X
* Go back to the previous RDD and apply the transforms again
- J & J
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Example: processing logs Spark Streaming
* Transform (creates new RDDs) * Map-Reduce & Pregel expect static data
— Grab error message from a log « Spark Streaming enables processing live data streams
— Grab only ERROR messages & extract the source of error N A
— Same programming operations
+ Actions : Count mysql & php errors — Input data is chunked into batches
// base RDD « Programmer specifies time interval
val lines = sc.textFile("hdfs://...")
// transformed RDDs
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split("\t")).map(r => r(l))
messages.cache() input data batches of batches of
stream Spark input data Spark | processed data
// action 1 Streaming Engine \—“—“::>
messages.filter(_.contains("mysql")).count()
// action 2
messages.filter(_.contains("php")).count()
- J & J
s =
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Spark Streaming: DStreams Spark Summary
* Discretized Stream = DStream » Supports streaming
— Continuous stream of data (from source or a transformation) — Handle continuous data streams via Spark Streaming
— Appears as a continuous series of RDDs, each for a time interval « Fast
ROD@time1 ROD@tme2 ROD@tme3 ROD@timed — Often up to 10x faster on disk and 100x faster in memory than
osvean - gonten |- g L eren > MapReduce
— General execution graph model
» No need to have "useless” phases just to fit into the model
— Each operation on a DStream translates to operations on the RDDs — In-memory storage for RDDs
tos Lot | [t | [t  Fault tolerant: RDDs can be regenerated
lﬂiffﬁffnu l l — You know what the input data set was, what transformations were
ords eres e applied to it, and what output it creates
DStream time 0 to 1 time 1to 2 time 2to3 time3tod |
— Join operations allow combining multiple streams
. J - J
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