
Distributed Systems
20. Other parallel frameworks

Paul Krzyzanowski

Rutgers University

Fall 2017

1November 20, 2017 © 2014-2017 Paul Krzyzanowski



Can we make MapReduce easier?
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Apache Pig

• Why?
– Make it easy to use MapReduce via scripting instead of Java
– Make it easy to use multiple MapReduce stages
– Built-in common operations for join, group, filter, etc.

• How to use?
– Use Grunt – the pig shell
– Submit a script directly to pig
– Use the PigServer Java class
– PigPen – Eclipse plugin

• Pig compiles to several Hadoop MapReduce jobs
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Apache Pig
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Count Job
(in Pig Latin)

A = LOAD ‘myfile’ AS (x, y, z);
B = FILTER A by x>0;
C = GROUP B by x;
D = FOREACH A GENERATE

x, COUNT(B);
STORE D into ’output’;

Pig Framework

• Parse
• Check
• Optimize
• Plan Execution
• Submit jar to Hadoop
• Monitor progress

Hadoop 
Execution

• Map: Filter
• Reduce: Counter



Pig: Loading Data

Load/store relations in the following formats:
• PigStorage: field-delimited text
• BinStorage: binary files 
• BinaryStorage: single-field tuples with a value of bytearray

• TextLoader: plain-text
• PigDump: stores using toString() on tuples, one per line
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Example

• Each statement defines a new dataset
– Datasets can be given aliases to be used later

• FOREACH iterates over the members of a ”bag”
– Input is grpd: list of log entries grouped by user
– Output is group, COUNT(log): list of {user, count}

• FILTER applies conditional filtering

• ORDER applies sorting
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log = LOAD ‘test.log’ AS (user, timestamp, query);
grpd = GROUP log by user;
cntd = FOREACH grpd GENERATE group, COUNT(log);
fltrd = FILTER cntd BY cnt > 50;
srtd = ORDER fltrd BY cnt;
STORE srtd INTO ‘output’;



See pig.apache.org
for full documentation
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MapReduce isn’t always the answer

• MapReduce works well for certain problems
– Framework provides

• Automatic parallelization
• Automatic job distribution

• For others:
– May require many iterations
– Data locality usually not preserved between Map and Reduce

• Lots of communication between map and reduce workers
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Bulk Synchronous Parallel (BSP)

• Computing model for parallel computation
• Series of supersteps

1. Concurrent computation
2. Communication
3. Barrier synchronization
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Bulk Synchronous Parallel (BSP)

10

Superstep 0 Superstep 1 Superstep 2 Superstep 3 Superstep 4 Superstep 5



Bulk Synchronous Parallel (BSP)

• Series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization
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• Processes (workers) are randomly 
assigned to processors

• Each process uses only local data
• Each computation is asynchronous of 

other concurrent computation
• Computation time may vary
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Bulk Synchronous Parallel (BSP)

• Series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization
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• Messaging is restricted to the end of a 
computation superstep

• Each worker sends a message to 0 or 
more workers

• These messages are inputs for the next 
superstep
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Bulk Synchronous Parallel (BSP)

• Series of supersteps
1. Concurrent computation
2. Communication
3. Barrier synchronization
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• The next superstep does not begin until 
all messages have been received

• Barriers ensure no deadlock: no circular 
dependency can be created

• Provide an opportunity to checkpoint
results for fault tolerance
– If failure, restart computation from last 

superstep
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BSP Implementation: Apache Hama

• Hama: BSP framework on top of HDFS
– Provides automatic parallelization & distribution
– Uses Hadoop RPC

• Data is serialized with Google Protocol Buffers
– Zookeeper for coordination (Apache version of Google’s Chubby)

• Handles notifications for Barrier Sync

• Good for applications with data locality
– Matrices and graphs
– Algorithms that require a lot of iterations

14

hama.apache.org



Hama programming (high-level)
• Pre-processing

– Define the number of peers for the job
– Split initial inputs for each of the peers to run their supersteps
– Framework assigns a unique ID to each worker (peer)

• Superstep: the worker function is a superstep
– getCurrentMessage() – input messages from previous superstep 
– Compute – your code
– send(peer, msg) – send messages to a peer
– sync() – synchronize with other peers (barrier)

• File I/O
– Key/value model used by Hadoop MapReduce & HBase
– readNext(key, value)
– write(key, value)
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For more information

• Architecture, examples, API
• Take a look at:

– Apache Hama project page
• http://hama.apache.org

– Hama BSP tutorial
• https://hama.apache.org/hama_bsp_tutorial.html

– Apache Hama Programming document
• http://bit.ly/1aiFbXS

http://people.apache.org/~tjungblut/downloads/hamadocs/ApacheHamaBSPProgrammingmodel_06.pdf
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Graph computing
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Graphs are common in computing

• Social links
– Friends
– Academic citations
– Music
– Movies

• Web pages
• Network connectivity
• Roads
• Disease outbreaks
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Processing graphs on a large scale is hard

• Computation with graphs
– Poor locality of memory access
– Little work per vertex

• Distribution across machines
– Communication complexity
– Failure concerns

• Solutions
– Application-specific, custom solutions
– MapReduce or databases

• But require many iterations (and a lot of data movement)
– Single-computer libraries: limits scale
– Parallel libraries: do not address fault tolerance
– BSP: close but too general

19



Pregel: a vertex-centric BSP

Input: directed graph
– A vertex is an object

• Each vertex uniquely identified with a name
• Each vertex has a modifiable value

– Directed edges: links to other objects
• Associated with source vertex
• Each edge has a modifiable value
• Each edge has a target vertex identifier
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http://googleresearch.blogspot.com/2009/06/large-scale-graph-computing-at-google.html
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Pregel: computation

Computation: series of supersteps
– Same user-defined function runs on each vertex

• Receives messages sent from the previous superstep
• May modify the state of the vertex or of its outgoing edges
• Sends messages that will be received in the next superstep

– Typically to outgoing edges
– But can be sent to any known vertex

• May modify the graph topology

• Each superstep ends with a barrier (synchronization 
point)
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Pregel: termination

Pregel terminates when every vertex votes to halt
• Initially, every vertex is in an active state

– Active vertices compute during a superstep

• Each vertex may choose to deactivate
itself by voting to halt
– The vertex has no more work to do
– Will not be executed by Pregel
– UNLESS the vertex receives a message

• Then it is reactivated
• Will stay active until it votes to halt again

• Algorithm terminates when all vertices are 
inactive and there are no messages in transit
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Pregel: output

• Output is the set of values output by the vertices
• Often a directed graph

– May be non-isomorphic to original since edges & vertices can be 
added or deleted

… Or summary data
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Examples of graph computations
• Shortest path to a node

– Each iteration, a node sends the shortest distance received to all 
neighbors

• Cluster identification
– Each iteration: get info about clusters from neighbors.
– Add myself
– Pass useful clusters to neighbors (e.g., within a certain depth or size)

• May combine related vertices
• Output is a smaller set of disconnected vertices representing clusters of 

interest

• Graph mining
– Traverse a graph and accumulate global statistics

• Page rank
– Each iteration: update web page ranks based on messages from 

incoming links.
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Simple example: find the maximum value

• Each vertex contains a value
• In the first superstep:

– A vertex sends its value to its neighbors

• In each successive superstep:
– If a vertex learned of a larger value from its incoming messages,

it sends it to its neighbors
– Otherwise, it votes to halt

• Eventually, all vertices get the largest value
• When no vertices change in a superstep, the algorithm 

terminates
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Simple example: find the maximum value

Semi-pseudocode:
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class MaxValueVertex
: public Vertex<int, void, int> {

void Compute(MessageIterator *msgs) {
int maxv = GetValue();
for (; !msgs->Done(); msgs->Next())

maxv = max(msgs.Value(), maxv);

if (maxv > GetValue()) || (step == 0)) {
*MutableValue() = maxv;
OutEdgeIterator out = GetOutEdgeIterator();
for (; !out.Done(); out.Next())

sendMessageTo(out.Target(), maxv)
} else

VoteToHalt();
}

}
};

1. vertex value type; 2. edge value type 
(none!); 3. message value type

find maximum value

send maximum 
value to all 
edges



Simple example: find the maximum value
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3 6 2 1 Superstep 0

Inactive vertexActive vertex

6 6 2 6 Superstep 1

Superstep 0: Each vertex propagates its own value to connected vertices

Superstep 1: V0 updates its value: 6 > 3
V3 updates its value: 6 > 1
V1 and V2 do not update so vote to halt

V0 V1 V2 V3



Simple example: find the maximum value
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3 6 2 1 Superstep 0

Inactive vertexActive vertex

6 6 2 6 Superstep 1

6 6 6 6 Superstep 2

Superstep 2: V1 receives a message – becomes active 
V3 updates its value: 6 > 2
V1, V2, and V3 do not update so vote to halt

V0 V1 V2 V3



Simple example: find the maximum value

29

Inactive vertexActive vertex

6 6 6 6 Superstep 2

6 6 6 6 Superstep 3

V0 V1 V2 V3

Superstep 3: V1 receives a message – becomes active
V3 receives a message – becomes active
No vertices update their value – all vote to halt

Done!



Summary: find the maximum value
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Locality

• Vertices and edges remain on the machine that does the 
computation

• To run the same algorithm in MapReduce 
– Requires chaining multiple MapReduce operations
– Entire graph state must be passed from Map to Reduce

… and again as input to the next Map
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Pregel API: Basic operations
• A user subclasses a Vertex class

• Methods
– Compute(MessageIterator*): Executed per active vertex in each superstep

• MessageIterator identifies incoming messages from previous supersteps

– GetValue(): Get the current value of the vertex

– MutableValue(): Set the value of the vertex

– GetOutEdgeIterator(): Get a list of outgoing edges
• .Target(): identify target vertex on an edge
• .GetValue(): get the value of the edge
• .MutableValue(): set the value of the edge

– SendMessageTo(): send a message to a vertex
• Any number of messages can be sent
• Ordering among messages is not guaranteed
• A message can be sent to any vertex (but our vertex needs to have its ID)
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Pregel API: Advanced operations
Combiners

• Each message has an overhead – let’s reduce # of messages
– Many vertices are processed per worker (multi-threaded)
– Pregel can combine messages targeted to one vertex into one message

• Combiners are application specific
– Programmer subclasses a Combiner class and overrides Combine() method

• No guarantee on which messages may be combined
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Combiner
Sums input messages

4
8
1
5
6

24

Combiner
Minimum value

15
12
71
11
15
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Pregel API: Advanced operations

Aggregators
• Handle global data
• A vertex can provide a value to an aggregator during a 

superstep
– Aggregator combines received values to one value
– Value is available to all vertices in the next superstep

• User subclasses an Aggregator class
• Examples

– Keep track of total edges in a graph
– Generate histograms of graph statistics
– Global flags: execute until some global condition is satisfied
– Election: find the minimum or maximum vertex
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Pregel API: Advanced operations

Topology modification
• Examples

– If we’re computing a spanning tree: remove unneeded edges
– If we’re clustering: combine vertices into one vertex

• Add/remove edges/vertices
• Modifications visible in the next superstep
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Pregel Design
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Execution environment
• Many copies of the program

are started on a cluster of machines

• One copy becomes the master
– Will not be assigned a portion of the graph
– Responsible for coordination

• Cluster’s name server = chubby
– Master registers itself with the name service
– Workers contact the name service 

to find the master
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Rack
40-80 computers

Cluster
1,000s to 10,000+ computers



Partition assignment
• Master determines # partitions in graph
• One or more partitions assigned to each worker

– Partition = set of vertices
– Default: for N partitions

hash(vertex ID) mod N⇒ worker

May deviate: e.g., place vertices representing the same web site in one 
partition

– More than 1 partition per worker: improves load balancing

• Worker
– Responsible for its section(s) of the graph
– Each worker knows the vertex assignments of other workers
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Input assignment

• Master assigns parts of the input to each worker
– Data usually sits in GFS or Bigtable

• Input = set of records
– Record = vertex data and edges
– Assignment based on file boundaries

• Worker reads input
– If it belongs to any of the vertices it manages, messages sent 

locally
– Else worker sends messages to remote workers

• After data is loaded, all vertices are active
39



Computation
• Master tells each worker to perform a superstep
• Worker:

– Iterates through vertices (one thread per partition)
– Calls Compute() method for each active vertex
– Delivers messages from the previous superstep
– Outgoing messages

• Sent asynchronously
• Delivered before the end of the superstep

• When done
– worker tells master how many vertices will be active in the next 

superstep

• Computation done when no more active vertices in the 
cluster
– Master may instruct workers to save their portion of the graph
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Handling failure
• Checkpointing

– Controlled by master … every N supersteps
– Master asks a worker to checkpoint at the start of a superstep

• Save state of partitions to persistent storage
– Vertex values
– Edge values
– Incoming messages

– Master is responsible for saving aggregator values

• Master sends “ping” messages to workers
– If worker does not receive a ping within a time period
⇒Worker terminates

– If the master does not hear from a worker
⇒ Master marks worker as failed

• When failure is detected
– Master reassigns partitions to the current set of workers
– All workers reload partition state from most recent checkpoint
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Pregel outside of Google

Apache Giraph
– Initially created at Yahoo
– Used at Facebook to analyze the social graph of users
– Runs under Hadoop MapReduce framework

• Runs as a Map-only job
• Adds fault-tolerance to the master by using ZooKeeper for coordination
• Uses Java instead of C++
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Conclusion

• Vertex-centric approach to BSP
• Computation = set of supersteps

– Compute() called on each vertex per superstep
– Communication between supersteps: barrier synchronization

• Hides distribution from the programmer
– Framework creates lots of workers
– Distributes partitions among workers
– Distributes input
– Handles message sending, receipt, and synchronization
– A programmer just has to think from the viewpoint of a vertex

• Checkpoint-based fault tolerance
43



Spark: Generalizing MapReduce
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Apache Spark

• Goal: Generalize MapReduce
– Similar shard-and-gather approach to MapReduce
– Add fast data sharing & general DAGs

• Generic data storage interfaces
– Storage agnostic: use HDFS, Cassandra database, whatever
– Resilient Distributed Data (RDD) sets

• An RDD is a chunk of data that gets processed – a large collection of stuff
– In-memory caching

• More general functional programming model
– Transformation and action
– In Map-Reduce, transformation = map, action = reduce
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High-level view

• Job = bunch of transformations & actions on RDDs
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High-level view

• Cluster manager breaks the job into tasks
• Sends tasks to worker nodes where the data lives
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Worker node

• One or more executors
– JVM process

– Talks with cluster manager

– Receives tasks
• JVM code (e.g., compiled Java, 

Clojure, Scala, JRuby, …)
• Task = transformation or action

– Data to be processed (RDD)
• Local to the node

– Cache
• Stores frequently-used data in memory
• Key to high performance
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Data & RDDs
• Data organized into RDDs: 

– Big data: partition it across lots of computers

• How are RDDs created?
1. Create from any file stored in HDFS or other storage supported in 

Hadoop (Amazon S3, HDFS, HBase, Cassandra, etc.)
• Created externally (e.g., event stream, text files, database)
• Example:

– Query a database & make query the results an RDD

– Any Hadoop InputFormat, such as a list of files or a directory

2. Streaming sources (via Spark Streaming)
• Fault-tolerant stream with a sliding window

3. An RDD can be the output of a Spark transformation function
• Example, filter out data, select key-value pairs
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Properties of RDDs
• Immutable

– You cannot change it – only create new RDDs
– The framework will eventually collect unused RDDs

• Typed
– Contain some parsable data structure – e.g., key-value set

• Created from – and thus dependent on other RDDs
– Either original source data or computed from one or more other RDDs

• Partitioned – parts of an RDD may go to different servers
– Function can be defined for computing each split
– Default partitioning function = hash(key) mod server_count

• Ordered (optional)
– Elements in an RDD can be sorted
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Operations on RDDs

• Two types of operations on RDDs
• Transformations

– Lazy – not computed immediately
– Transformed RDD is recomputed when an action is run on it

• Work backwards:
– What RDDs do you need to apply to get an action?
– What RDDs do you need to apply to get the input to this RDD?

– RDD can be persisted into memory or disk storage

• Actions
– Finalizing operations

• Reduce, count, grab samples, write to file
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Spark Transformations
Transformation Description

map(func) Pass each element through a function
func

filter(func) Select elements of the source on 
which func returns true

flatmap(func) Each input item can be mapped to 0 or 
more output items

sample(withReplacement, fraction, 
seed)

Sample a fraction fraction of the data, 
with or without replacement, using a 
given random number generator seed

union(otherdataset) Union of the elements in the source 
data set and otherdataset

distinct([numtasks]) The distinct elements of the source 
dataset
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Spark Transformations
Transformation Description

groupByKey([numtasks]) When called on a dataset of (K, V) 
pairs, returns a dataset of (K, seq[V]) 
pairs

reduceByKey(func, [numtasks]) Aggregate the values for each key 
using the given reduce function

sortByKey([ascending], [numtasks]) Sort keys in ascending or descending
order

join(otherDataset, [numtasks]) Combines two datasets, (K, V) and (K, 
W) into (K, (V, W))

cogroup(otherDataset, [numtasks]) Given (K, V) and (K, W), returns (K, 
Seq[V], Seq[W])

cartesian(otherDataset) For two datasets of types T and U, 
returns a dataset of (T, U) pairs
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Spark Actions
Action Description

reduce(func) Aggregate elements of the dataset 
using func.

collect(func, [numtasks]) Return all elements of the dataset as 
an array

count() Return the number of elements in the 
dataset

first() Return the first element of the dataset

take(n) Return an array with the first n
elements of the dataset

takeSample(withReplacement, 
fraction, seed)

Return an array with a random sample 
of num elements of the dataset
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Spark Actions
Action Description

saveAsTextFile(path) Write dataset elements as a text file

saveAsSequenceFile(path) Write dataset elements as a Hadoop
SequenceFile

countByKey () For (K, V) RDDs, return a map of (K, 
Int) pairs with the count of each key

foreach(func) Run func on each element of the 
dataset
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Data Storage

• Spark does not care how source data is stored
– RDD connector determines that
– E.g., read RDDs from tables in a Cassandra DB; write new RDDs 

to Cassandra tables

• RDD Fault tolerance
– RDDs track the sequence of transformations used to create them
– Enables recomputing of lost data

• Go back to the previous RDD and apply the transforms again
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Example: processing logs

• Transform (creates new RDDs)
– Grab error message from a log
– Grab only ERROR messages & extract the source of error

• Actions : Count mysql & php errors
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// base RDD
val lines = sc.textFile("hdfs://...”)

// transformed RDDs
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split("\t")).map(r => r(1))
messages.cache()

// action 1
messages.filter(_.contains("mysql")).count() 

// action 2 
messages.filter(_.contains("php")).count() 



Spark Streaming

• Map-Reduce & Pregel expect static data
• Spark Streaming enables processing live data streams

– Same programming operations 
– Input data is chunked into batches 

• Programmer specifies time interval
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Spark Streaming: DStreams

• Discretized Stream = DStream
– Continuous stream of data (from source or a transformation)
– Appears as a continuous series of RDDs, each for a time interval

– Each operation on a DStream translates to operations on the RDDs

– Join operations allow combining multiple streams
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Spark Summary

• Supports streaming
– Handle continuous data streams via Spark Streaming

• Fast
– Often up to 10x faster on disk and 100x faster in memory than 

MapReduce
– General execution graph model

• No need to have ”useless” phases just to fit into the model
– In-memory storage for RDDs

• Fault tolerant: RDDs can be regenerated
– You know what the input data set was, what transformations were 

applied to it, and what output it creates
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The end
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