
CS 417 – DISTRIBUTED SYSTEMS

Week 2: Part 4 – Recitation
Web Services

TA: David Domingo © 2022 Paul Krzyzanowski. No part of this 
content, may be reproduced or reposted in 
whole or in part in any manner without the 
permission of the copyright owner.



From Web Browsing to Web Services
• Web browser:
– Dominant model for user interaction on the Internet

• Not good for programmatic access to data or manipulating data
– UI is a major component of the content:

Web pages are focused on presentation
– Site scraping is a pain!

• We wanted
– Remotely hosted services – that programs can use
– Machine-to-machine communication

2September 21, 2022



Failures of distributed objects in practice
• RPC and distributed objects were built around the idea that you can access 

remote methods just you would access local ones

• Ideally, you can pass references to objects and the code wouldn’t care if they 
are local or remote

• BUT
– Remote objects behaved differently
– There’s A LOT more overhead to calling a remote procedure
– There were lots of ways to fail:
• Server can die, response can get lost, network could get disconnected, unexpected 

delays & retransmission
• In practice, we cannot ignore the network!

September 21, 2022 3



RPC and distributed objects had problems
• Interoperability – Didn’t always play well across different languages, OSes, hardware

• Transparency – We couldn’t ignore the network & remote execution parts! 
– Memory access, partial failure

• Firewalls – dynamic ports

• State – load balancing, resources

• No group communication – no replication

• No asynchronous messaging
– Large streaming responses not possible
– Notifications of delays not possibly
– No subscribe-publish models

Distributed objects mostly ended up in intranets
of homogenous systems and low latency networks

© 2021 Paul Krzyzanowski



Think about remote services differently
To program efficiently (make best use of the network) and defensively 
(handle failures), we may need to think about services differently

If we are aware of the overhead of the network
(as well as other aspects, like servers that reboot, load balancers, …)

Then we may design our operations differently
– Example
• Instead of iterating through 100 items and calling an RPC to look up the price
• We might send the entire list of 100 items and request a list of prices

September 21, 2022 5



Web Services
Set of protocols by which services can be published, discovered, and 
used in a technology neutral form
– Language & architecture independent

• Applications will typically invoke multiple remote services
Microservices in a Service Oriented Architecture (SOA)

6September 21, 2022 © 2021 Paul Krzyzanowski



Service Oriented Architecture (SOA)
Microservices = SOA = Programming model

• The app is an integration of network-accessible services (components)

• Each service has a well-defined interface

• Components are unassociated & loosely coupled

7

Neither service depends on the 
other: all are mutually 

independent

Neither service needs to know 
about the internal structure of the 

others

September 21, 2022 © 2021 Paul Krzyzanowski



Benefits of microservices (SOA)
• Autonomous modules
– Each module does one thing well
– Supports reuse of modules across applications

• Loose coupling
– Requires minimal knowledge – don’t need to know implementation
– Migration: Services can be located and relocated on any servers
– Scalability: new services can be added/removed on demand 

… and on different servers – or load balanced
– Updates: Individual services can be replaced without interruption

8September 21, 2022 © 2021 Paul Krzyzanowski



General Principles of Web Services
• Coarse-grained
– Usually few operations & large messages

• Platform neutral
– Messages don’t rely on the underlying language, OS, or hardware
– Standardized protocols & data formats
– Payloads are some standard format (text XML or JSON, binary protocol buffers)

• Message-oriented
– Communicate by exchanging messages

• HTTP usually used for transport
– Use existing infrastructure: web servers, authentication, encryption, firewalls, load-

balancers

9September 21, 2022 © 2021 Paul Krzyzanowski



September 21, 2022 10

Web Services vs. Distributed Objects
Web Services Distributed Objects
Document Oriented
• Exchange documents

Object Oriented
• Instantiate remote objects
• Request operations on a remote object
• Receive results
• …
• Delete the object when done

Document design is the key*
• Interfaces are just a way to pass 

documents

Interface design is the key
• Messages just package data

Servers are stateless
• State is contained within the documents 

that are exchanged (e.g., customer ID)

Stateful interactions
• Remote object stores state

*Disclaimer: sort of – with some interfaces, like REST, the interface is the URL 



XML RPC

11September 21, 2022



Origins
• Born: early 1998
• Data marshaled into XML messages
– All request and responses are human-readable XML

• Explicit typing
• Transport over HTTP protocol
– Solves firewall issues

• No IDL compiler support for most languages
– Lots of support libraries for other languages
– Great support in some languages – those that support introspection (Python, 

Perl)

• Example: WordPress uses XML-RPC
12September 21, 2022



XML-RPC example

<methodCall>
<methodName>

sample.sumAndDifference
</methodName>
<params>

<param><value><int> 5 </int></value></param>
<param><value><int> 3 </int></value></param>

</params>
</methodCall>

13September 21, 2022



XML-RPC data types

• int

• string

• boolean

• double

• dateTime.iso8601

• base64

• array

• struct

14September 21, 2022



Assessment

• Simple (spec about 7 pages)

• Humble goals

• Good language support
– Little/no function call transparency for some languages

• No garbage collection, remote object references, etc.
– Focus is on data messaging over HTTP transport

• Little industry support (Apple, Microsoft, Oracle, …)
– Mostly grassroots and open source

15September 21, 2022



SOAP 

16September 21, 2022



SOAP origins
(Simple) (Object) Access Protocol

• Since 1998 (latest: v1.2 April 2007)

• Started with strong Microsoft & IBM support

• Continues where XML-RPC left off:
– XML-RPC is a 1998 simplified subset of SOAP
– user defined data types
– ability to specify the recipient
– message specific processing control
– and more …

September 21, 2022 17



SOAP
• Stateless messaging model
• Basic facility is used to build other interaction models
– Request-response (RPC)
– Request-multiple response
– Asynchronous notification

• Objects marshaled and unmarshaled to SOAP-format XML
– Usually sent over HTTP

• Like XML-RPC, SOAP is a messaging format
– No garbage collection or object references
– Does not define transport
– Does not define stub generation

September 21, 2022 18



SOAP Web Services and WSDL
• Web Services Description Language
– Analogous to an IDL

• A WSDL document describes a set of services
– Name, operations, parameters, where to send requests
– Goal is that organizations will exchange WSDL documents
• If you get WSDL document, you can feed it to a program that will generate software 

to send and receive SOAP messages

19September 21, 2022



WSDL Structure
<definitions>

<types>
data type used by web service: defined via XML Schema syntax 

</types>
<message>

describes data elements of operations: parameters
</message>
<portType>

describes service: operations and messages involved
</portType>
<binding>

defines message format & protocol details for each port
</binding>

</definitions>

September 21, 2022 20



Java Web Services

21September 21, 2022



What do we do with WSDL?

It’s an IDL – not meant for human consumption

Interface 
definition

WSDL 
documente.g., wsdl.exe,

Java2WSDL

WSDL 
document Code

e.g., Axis2 WSDL2Java
(apache Eclipse plug-in)

September 21, 2022 22



JAX-WS: Java API for XML Web Services

• Lots of them! We’ll look at one

• JAX-WS (evolved from earlier JAX-RPC)
– Java API for XML-based Web-Service messaging & RPCs
– Invoke a Java-based web service using Java RMI
– Interoperability is a goal
• Use SOAP & WSDL
• Java not required on the other side (client or server)

• Service
– Defined to clients via a WSDL document

23September 21, 2022



JAX-WS: Creating an RPC Endpoint
• Server
– Define an interface (Java interface)
– Implement the service
– Create a publisher
• Creates an instance of the service and publishes it with a name

• Client
– Create a proxy (client-side stub)
• wsimport command takes a WSDL document and creates a stub

– Write a client that creates an instance of the service and invokes methods on 
it (calling the stub)

September 21, 2022 24



1. Java client calls a method on a stub

2. The stub creates marshals the request into a 
SOAP message for the web service

3. The request is sent to the server. 

4. Server gets the call and directs it to the 
framework

5. Framework calls the implementation

6. The implementation returns results to the 
framework

7. The framework marshals the results into a SOAP 
message

8. The sends the results back to the client stub

9. The client stub returns the information to the 
caller

JAX-RPC Execution Steps

Client

Stub

Protocol
(SOAP/HTTP)

JAX-WS
Servlets

Servlet Framework

Protocol
(SOAP/HTTP)

SOAP/HTTP/TCP/IP

service implementation

September 21, 2022 25



The future of SOAP?
• Still used (mostly in large enterprises) but…
– Required a framework – you will never create & parse messages yourself
– Language support not always great
– Hard to understand & hard to use in many cases
– Allegedly complex because “we want our tools to read it, not people” 

– unnamed Microsoft employee
– Heavyweight: XML + verbose messaging structure

• Dropped by Google APIs in 2006

• Still used in many places, including Microsoft APIs

• But we wanted something lighter and easier

September 21, 2022 26



September 21, 2022 27

REST



REST
REpresentational State Transfer
• Stay with the principles of the web
– Four HTTP commands let you operate on data (a resource):
• PUT (create)
• GET (read)
• POST (update)
• DELETE (delete)

– And a fifth one:
• OPTIONS (query) - determine options associated with a resource
– Rarely used … but it’s there 

• The URL identifies the resource

• Messages contain representation of data (contents)

CRUD: Create, Read, Update, Delete

September 21, 2022 28



Resource-oriented services
Blog example

• Get a user's blogroll – a list of blogs subscribed by a user
HTTP GET //myblogs.org/listsubs?user=paul

• To get info about a specific blog (id = 12345):
HTTP GET http://myblogs.org/bloginfo?id=12345

September 21, 2022 29



Resource-oriented services
• Get parts info
HTTP GET //www.parts-depot.com/parts

• Returns a document containing a list of parts

<?xml version="1.0"?>
<p:Parts xmlns:p="http://www.parts-depot.com" 

xmlns:xlink="http://www.w3.org/1999/xlink">
<Part id="00345" xlink:href="http://www.parts-depot.com/parts/00345"/>
<Part id="00346" xlink:href="http://www.parts-depot.com/parts/00346"/>
<Part id="00347" xlink:href="http://www.parts-depot.com/parts/00347"/>
<Part id="00348" xlink:href="http://www.parts-depot.com/parts/00348"/>

</p:Parts>

30September 21, 2022



Resource-oriented services
• Get detailed parts info:
HTTP GET //www.parts-depot.com/parts/00345

• Returns a document with information about a specific part

?xml version="1.0"?>
<p:Part xmlns:p="http://www.parts-depot.com" 
xmlns:xlink="http://www.w3.org/1999/xlink">

<Part-ID>00345</Part-ID>
<Name>Widget-A</Name>
<Description>This part is used within the frap assembly</Description>
<Specification 

xlink:href="http://www.parts-depot.com/parts/00345/specification"/>
<UnitCost currency="USD">0.10</UnitCost>
<Quantity>10</Quantity>

</p:Part>

September 21, 2022 31



REST vs. RPC Interface Paradigms
Example from wikipedia:
RPC

getUser(), addUser(), removeUser(), updateUser(),
getLocation(), AddLocation(), removeLocation()

exampleObject = new ExampleApp(“example.com:1234”);
exampleObject.getUser();

REST
http://example.com/users
http://example.com/users/{user}
http://example.com/locations
userResource =
new Resource(“http://example.com/users/001”);
userResource.get();

32September 21, 2022



Examples of REST services
• Various Amazon & Microsoft APIs

• Facebook Graph API

• Yahoo! Search APIs

• Flickr

• Twitter

• Open Zing Services – Sirius radio
svc://Radio/ChannelList
svc://Radio/ChannelInfo?sid=001-siriushits1&ts=2007091103205

• Tesla Cars
POST https://owner-api.teslamotors.com/api/1/vehicles/vehicle_id/command/flash_lights

33September 21, 2022



September 21, 2022 34

AJAX



Web Clients: AJAX

• Asynchronous JavaScript And XML
– Bring web services to web clients (JavaScript)

• Asynchronous
– Client not blocked while waiting for result

• JavaScript
– Request can be invoked from JavaScript

(using XMLHTTPRequest)
– JavaScript may also modify the Document Object Model (DOM): the elements 

of the page: content, attributes, styles, events

• XML
– Data sent & received as JSON or XML

35September 21, 2022



AJAX & XMLHttpRequest

• Allow Javascript to make HTTP requests and process results 
(change page without refresh)

var ajax = new XMLHttpRequest();
ajax.onreadystatechange = function() {

// stuff to do when the request is ready
}
ajax.open("GET", "http://poopybrain.com/stuff.txt", true);
ajax.send();

• Tell object:
– Type of request you’re making, URL to request
– Function to call when request is made

September 21, 2022 36



AJAX on the Web
• AJAX ushered in Web 2.0 – responsive web pages

• Early high-profile AJAX sites:
– Microsoft Outlook Web Access, Gmail, Google Maps, Writely (Google Docs), 

…

37September 21, 2022



The End

September 21, 2022 38



The End

September 21, 2022 40



The End

September 21, 2022 42


