
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 6: Distributed File Systems 
Part 4: Parallel File Systems

© 2023 Paul Krzyzanowski. No part of this 
content may be reproduced or reposted in 
whole or in part in any manner without the 
permission of the copyright owner.



Client-server file systems
• Network Attached Storage is built on a central server architecture
– Point of congestion, single point of failure

• Alleviate performance somewhat with replication and client caching
– E.g., Coda, tokens (aka leases, oplocks)
– Limited replication can lead to congestion

• But file data is still centralized
– A file server stores all data from a file – not split across servers
– Even if replication is in place, a client downloads all data for a file from one server

• File sizes are limited to the capacity available on a server
– What if you need a 1,000 TB file?

CS 417 © 2023 Paul Krzyzanowski 2



What is a parallel file system?
• Conventional file systems
– Store data & metadata on the same storage device
– Example:
• Linux directories are just files that contain lists of names & inodes
• inodes are data structures placed in well-defined areas of the disk that contain information about 

the file

• Parallel file systems
– File data can span multiple servers
– Metadata can be on separate servers from the data
– Metadata = information about the file
• Includes name, access permissions, timestamps, file size, & locations of data blocks

– Data = actual file contents

3CS 417 © 2023 Paul Krzyzanowski



Google File System (GFS)
(≈ Apache Hadoop Distributed File System)

4CS 417 © 2023 Paul Krzyzanowski



GFS Goals
• Scalable distributed file system

• Designed for large data-intensive applications

• Fault-tolerant; runs on commodity hardware

• Delivers high performance to a large number of clients

5CS 417 © 2023 Paul Krzyzanowski



Design Assumptions
• Assumptions for conventional file systems don’t work
– E.g., “most files are small”, “lots have short lifetimes”

• Component failures are the norm, not an exception
– File system = thousands of storage machines
– Some % not working at any given time

• Files are huge. Multi-TB files are the norm
– It doesn’t make sense to work with billions of nKB-sized files
– I/O operations and block size choices are also affected

CS 417 © 2023 Paul Krzyzanowski 6



Design Assumptions
• File access:
– Most files are appended, not overwritten
• Random writes within a file are almost never done
• Once created, files are mostly read; often sequentially

– Workload is mostly:
• Reads: large streaming reads,  small random reads – these dominate
• Large appends
• Hundreds of processes may append to a file concurrently

• GFS will store a modest number of files for its scale
– approx. a few million

• Designing the GFS API together with the design of apps
– Apps can handle a relaxed consistency model

CS 417 © 2023 Paul Krzyzanowski 7



Basic Design Principles
• Use separate servers to store metadata
– Metadata includes lists of (server, block_number) sets that identify which blocks on 

which servers hold file data
– We need more bandwidth for data access than metadata access
• Metadata is small; file data can be huge

• Use large logical blocks
– Most "normal" file systems are optimized for small files
• A block size is typically 4KB

– Expect huge files, so use huge blocks … >1,000x larger
• The list of blocks that makes up a file becomes easier to manage

• Replicate data
– Expect some servers to be down
– Store copies of data blocks on multiple servers

CS 417 © 2023 Paul Krzyzanowski 8



File System Interface
• GFS does not have a standard OS-level API
– No POSIX system call level API – no kernel/VFS implementation
– User-level API for accessing files
– GFS servers are implemented in user space using native Linux FS

• Files organized hierarchically in directories

• Operations
– Basic operations
• Create, delete, open, close, read, write

– Additional operations
• Snapshot: create a copy of a file or directory tree at low cost
• Append: allow multiple clients to append atomically without locking

9CS 417 © 2023 Paul Krzyzanowski



GFS Master & Chunkservers
GFS cluster
– Multiple chunkservers
• Data storage: fixed-size chunks 
• Chunks replicated on several systems 

– One master
• Stores file system metadata (names, attributes)
• Maps files to chunks

master

chunkserver

chunkserver

chunkserverchunkserver

chunkserver chunkserver

10

Thousands of 
chunkservers

CS 417 © 2023 Paul Krzyzanowski



GFS Master & 
Chunkservers

in a GFS cluster

CS 417 © 2023 Paul Krzyzanowski 11

master

chunkserver

chunkserver

chunkserverchunkserver

chunkserver chunkserver

metadata data

“directories & inodes” data blocks



file A file

is made of 64 MB chunks

that are replicated
for fault tolerance 

Chunks live on 
chunkservers

chunkserver

Checkpoint 
image

Operation 
log

In-memory FS metadata
master

The master manages the file system 
namespace:
names and name→{chunk list} mappings

chunkserver chunkserver chunkserver

GFS Files

12CS 417 © 2023 Paul Krzyzanowski



Chunks and Chunkservers
• Chunk size = 64 MB (default)
– Chunkserver stores a 32-bit checksum with each chunk
• In memory & logged to disk: allows it to detect data corruption

• Chunk Handle: identifies a chunk
– Globally unique 64-bit number
– Assigned by the master when the chunk is created

• Chunkservers store chunks on local disks as Linux files

• Each chunk is replicated on multiple chunkservers
– Three replicas (different levels can be specified)
– Popular files may need more replicas to avoid hotspots

CS 417 © 2023 Paul Krzyzanowski 13



Master
• Maintains all file system metadata
– Namespace
– Access control info
– Filename to chunks mappings
– Current locations of chunks

• Manages
– Chunk leases (locks)
– Garbage collection (freeing unused chunks)
– Chunk migration (copying/moving chunks)

• Fault tolerance
– Operation log replicated on multiple machines 
– New master can be started if the master fails

• Periodically communicates with all chunkservers
– Via heartbeat messages to get state and send commands

14CS 417 © 2023 Paul Krzyzanowski



Client Interaction Model
• GFS client code linked into each app
– No OS-level API – you have to use a library
– Interacts with master for metadata-related operations
– Interacts directly with chunkservers for file data
• All reads & writes go directly to chunkservers
• Master is not a point of congestion

• Neither clients nor chunkservers cache data
– Except for the caching by the OS system buffer cache

– Clients cache metadata – e.g., location of a file’s chunks

15CS 417 © 2023 Paul Krzyzanowski



One master = simplified design
• All metadata stored in master’s memory
– Super-fast access

• Namespaces and name-to-chunk_list maps
– Stored in memory
– Also persist in an operation log on the disk
• Replicated onto remote machines for backup

• Operation log
– Similar to a journal
– All operations are logged
– Periodic checkpoints (stored in a B-tree) to avoid playing back entire log

• Master does not store chunk locations persistently
– This is queried from all the chunkservers: avoids consistency problems

CS 417 © 2023 Paul Krzyzanowski 16



Why Large Chunks?
• Default chunk size = 64MB

(Linux ext4 block sizes: typically, 4 KB and up to 1 MB)

• Reduces need for frequent communication with master to get chunk location 
info – one query can give info on location of lots of bytes of data

• Clients can easily cache info to refer to all data of large files
– Cached data has timeouts to reduce possibility of reading stale data

• Large chunk makes it feasible to keep a TCP connection open to a chunkserver
for an extended time

• Master stores <64 bytes of metadata for each 64MB chunk

CS 417 © 2023 Paul Krzyzanowski 17



Reading Files
1. Contact the master

2. Get file’s metadata: list chunk handles

3. Get the location of each of the chunk handles
– Multiple replicated chunkservers per chunk

4. Contact any available chunkserver for chunk data

18CS 417 © 2023 Paul Krzyzanowski



Writing to files
• Less frequent than reading

• Master grants a chunk lease to one of the replicas
– This replica will be the primary replica chunkserver
– Primary can request lease extensions, if needed
– Master increases the chunk version number and informs replicas

19CS 417 © 2023 Paul Krzyzanowski



Writing to files: two phases

Phase 1: Send data
Deliver data but don’t write to the file
– Client asks the master for a list of chunkservers with replicas: primary & secondaries
– Client writes to the closest replica chunkserver that has not received the data
• Replica forwards the data to another replica chunkserver
• That chunkserver forwards to another replica chunkserver …

– Chunkservers store this data in a cache – it’s not part of the file yet

Goal: Maximixe bandwidth via pipelining
Minimize latency by forwarding data while it is being received

20

client chunkserver
1

chunkserver
2

chunkserver
3

CS 417 © 2023 Paul Krzyzanowski



Writing to files: two phases
Phase 2: Write data
Add it to the file (commit)
– Client waits for replicas to acknowledge receiving the data

– Sends a write request to the primary, identifying the data that was sent

– The primary is responsible for serialization of writes
• Assigns consecutive serial numbers to all writes that it received
• Applies writes in serial-number order and forwards write requests in that order to secondaries

– Once all acknowledgments have been received, 
the primary acknowledges the client

21

client primary 
chunkserver

chunkserver
2

chunkserver
3

CS 417 © 2023 Paul Krzyzanowski



Writing to files: separate data flow & control flow
Data Flow (phase 1) is different from Control Flow (phase 2)

• Data Flow (upload):
– Client to chunkserver to chunkserver to chunkserver…
– Order does not matter

• Control Flow (write):
– Client to primary; primary to all secondaries
– Locking used; Order maintained

Chunk version numbers are used to detect if any replica has stale data 
(was not updated because it was down)

22CS 417 © 2023 Paul Krzyzanowski



Namespace
• No per-directory data structure like most file systems
– E.g., directory file contains names of all files in the directory

• No aliases (hard or symbolic links)

• Namespace is a single lookup table
– Maps pathnames to metadata

23CS 417 © 2023 Paul Krzyzanowski



Core Part of Google Cluster Environment
Google Cluster Environment
– Core services: GFS + cluster scheduling system
– Typically, 100s to 1000s of active jobs
– 200+ clusters, many with 1000s of machines
– Pools of 1000s of clients
– 4+ PB file systems, 40 GB/s read/write loads

CS 417 © 2023 Paul Krzyzanowski 24

Commodity HW

Linux

Chunk 
Server

Scheduling 
Slave

Job 
1

Job 
2

Job 
n

Machine 1 Machine n

Scheduling 
Master

GFS
Master

Chubby
Lock Service

File system 
master

Job 
scheduler

Lease (lock) 
manager

Bring the computation 
close to the data

Commodity HW

Linux

Chunk 
Server

Scheduling 
Slave

Job 
1

Job 
2

Job 
n



HDFS: Hadoop Distributed File System
• Primary storage system for Hadoop applications
• Apache Hadoop
– Framework for distributed processing of large data sets across clusters of 

computers

• Hadoop includes:
– MapReduce™: software framework for distributed processing of large data sets on compute clusters.
– Avro™: A data serialization system.
– Cassandra™: A scalable multi-master database with no single points of failure.
– Chukwa™: A data collection system for managing large distributed systems.
– HBase™: A scalable, distributed database that supports structured data storage for large tables.
– Hive™: A data warehouse infrastructure that provides data summarization and ad hoc querying.
– Mahout™: A Scalable machine learning and data mining library.
– Pig™: A high-level data-flow language and execution framework for parallel computation.
– ZooKeeper™: A high-performance coordination service for distributed applications
– and more …

CS 417 © 2023 Paul Krzyzanowski 25



HDFS Design Goals & Assumptions
• HDFS is an open source (Apache) implementation inspired by GFS design

• Similar goals and same basic design as GFS
– Run on commodity hardware
– Highly fault tolerant
– High throughput – designed for large data sets
– OK to relax some POSIX file access requirements
– Large scale deployments 
• Instance of HDFS may comprise 1000s of servers
• Each server stores part of the file system’s data

• But 
– No support for concurrent appends

CS 417 © 2023 Paul Krzyzanowski 26



HDFS Design Goals & Assumptions
• Write-once, read-many-times file access model
– Single writer, multiple readers

• A file’s contents will not change
– Simplifies data coherency
– Suitable for web crawlers and big data analytics applications

27CS 417 © 2023 Paul Krzyzanowski



HDFS Architecture
• Written in Java

• Single NameNode
– Master server responsible for the namespace & access control

• Multiple DataNodes
– Responsible for managing storage attached to its node

• A file is split into one or more blocks
– Typical block size = 128 MB (vs. 64 MB for GFS)
– Blocks are stored in a set of DataNodes

CS 417 © 2023 Paul Krzyzanowski 28



file A file

is made of 64 MB chunks

that are replicated
for fault tolerance 

Chunks live on 
chunkservers

chunkserver

Checkpoint 
image

Operation 
log

In-memory FS metadata
master

The master manages the file system 
namespace:
names and name→{chunk list} mappings

chunkserver chunkserver chunkserver

GFS Files

29CS 417 © 2023 Paul Krzyzanowski



file

Blocks live on 
DataNodes

DataNode

FsImage EditLog

In-memory FS metadata
NameNode

The NameNode manages the file system 
namespace:
names and name→{block list} mappings

DataNode DataNode DataNode

HDFS: same stuff … different names

30CS 417 © 2023 Paul Krzyzanowski

A file

is made of 128 MB chunks

that are replicated
for fault tolerance 



NameNode (= GFS master)
• Executes metadata operations
– open, close, rename
– Maps file blocks to DataNodes
– Maintains HDFS namespace

• Transaction log (EditLog) records every change that occurs to file system metadata
– Entire file system namespace + file-block mappings is stored in memory
– … and stored in a file (FsImage) for persistence 

• NameNode receives a periodic Heartbeat and Blockreport from each DataNode
– Heartbeat = “I am alive” message
– Blockreport = list of all blocks managed by a DataNode
• Keep track of which DataNodes own which blocks & their replication count

CS 417 © 2023 Paul Krzyzanowski 31



DataNode (= GFS chunkserver)
• Responsible for serving read/write requests

• Blocks are replicated for fault tolerance
– App can specify # replicas at creation time
– Can be changed later

• Blocks are stored in the local file system at the DataNode

32CS 417 © 2023 Paul Krzyzanowski



Rack-Aware Reads & Replica Selection
• Client sends request to NameNode
– Receives list of blocks and replica DataNodes per block

• Client tries to read from the closest replica
– Prefer same rack
– Else same data center
– Location awareness is configured by the admin

33CS 417 © 2023 Paul Krzyzanowski



Writes
• Client caches file data into a temp file

• When temp file ≥ one HDFS block size
– Client contacts NameNode
– NameNode inserts file name into file system hierarchy & allocates a data block
– Responds to client with the destination data block
– Client writes to the block at the corresponding DataNode

• When a file is closed, remaining data is transferred to a DataNode
– NameNode is informed that the file is closed
– NameNode commits file creation operation into a persistent store (log)

• Data writes are chained: pipelined
– Client writes to the first (closest) DataNode
– That DataNode writes the data stream to the second DataNode
– And so on…

34CS 417 © 2023 Paul Krzyzanowski



The End

35CS 417 © 2023 Paul Krzyzanowski


